weka.classifiers.functions.Logistic Java Examples
The following examples show how to use
weka.classifiers.functions.Logistic.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: WekaLogisticRegressionTest.java From Java-Data-Science-Cookbook with MIT License | 5 votes |
public void buildRegression(){ logReg = new Logistic(); try { logReg.buildClassifier(iris); } catch (Exception e) { } System.out.println(logReg); }
Example #2
Source File: EnsembleProvider.java From AILibs with GNU Affero General Public License v3.0 | 5 votes |
/** * Initializes the CAWPE ensemble model consisting of five classifiers (SMO, * KNN, J48, Logistic and MLP) using a majority voting strategy. The ensemble * uses Weka classifiers. It refers to "Heterogeneous ensemble of standard * classification algorithms" (HESCA) as described in Lines, Jason & Taylor, * Sarah & Bagnall, Anthony. (2018). Time Series Classification with HIVE-COTE: * The Hierarchical Vote Collective of Transformation-Based Ensembles. ACM * Transactions on Knowledge Discovery from Data. 12. 1-35. 10.1145/3182382. * * @param seed * Seed used within the classifiers and the majority confidence * voting scheme * @param numFolds * Number of folds used within the determination of the classifier * weights for the {@link MajorityConfidenceVote} * @return Returns an initialized (but untrained) ensemble model. * @throws Exception * Thrown when the initialization has failed */ public static Classifier provideCAWPEEnsembleModel(final int seed, final int numFolds) throws Exception { Classifier[] classifiers = new Classifier[5]; Vote voter = new MajorityConfidenceVote(numFolds, seed); SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildCalibrationModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(1); smo.setKernel(kl); smo.setRandomSeed(seed); classifiers[0] = smo; IBk k = new IBk(100); k.setCrossValidate(true); EuclideanDistance ed = new EuclideanDistance(); ed.setDontNormalize(true); k.getNearestNeighbourSearchAlgorithm().setDistanceFunction(ed); classifiers[1] = k; J48 c45 = new J48(); c45.setSeed(seed); classifiers[2] = c45; classifiers[3] = new Logistic(); classifiers[4] = new MultilayerPerceptron(); voter.setClassifiers(classifiers); return voter; }
Example #3
Source File: EvaluationTests.java From meka with GNU General Public License v3.0 | 5 votes |
public void testThreshold() { BaggingML h = new BaggingML(); CC cc = new CC(); cc.setClassifier(new Logistic()); h.setClassifier(cc); Result r = EvaluationTests.cvEvaluateClassifier(h,"0.5"); assertTrue("PCutL Thresholds OK?", r.info.get("Threshold").equals("[0.4, 0.4, 0.4, 0.4, 0.6, 0.6]") ); }
Example #4
Source File: CAWPE.java From tsml with GNU General Public License v3.0 | 4 votes |
/** * Uses the 'basic UCI' set up: * Comps: SVML, MLP, NN, Logistic, C4.5 * Weight: TrainAcc(4) (train accuracies to the power 4) * Vote: MajorityConfidence (summing probability distributions) */ @Override //Abstract Ensemble public final void setupDefaultEnsembleSettings() { this.ensembleName = "CAWPE"; this.weightingScheme = new TrainAcc(4); this.votingScheme = new MajorityConfidence(); this.transform = null; CrossValidationEvaluator cv = new CrossValidationEvaluator(seed, false, false, false, false); cv.setNumFolds(10); this.trainEstimator = cv; Classifier[] classifiers = new Classifier[5]; String[] classifierNames = new String[5]; SMO smo = new SMO(); smo.turnChecksOff(); smo.setBuildLogisticModels(true); PolyKernel kl = new PolyKernel(); kl.setExponent(1); smo.setKernel(kl); smo.setRandomSeed(seed); classifiers[0] = smo; classifierNames[0] = "SVML"; kNN k=new kNN(100); k.setCrossValidate(true); k.normalise(false); k.setDistanceFunction(new EuclideanDistance()); classifiers[1] = k; classifierNames[1] = "NN"; classifiers[2] = new J48(); classifierNames[2] = "C4.5"; classifiers[3] = new Logistic(); classifierNames[3] = "Logistic"; classifiers[4] = new MultilayerPerceptron(); classifierNames[4] = "MLP"; setClassifiers(classifiers, classifierNames, null); }