org.neuroph.nnet.learning.BackPropagation Java Examples
The following examples show how to use
org.neuroph.nnet.learning.BackPropagation.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: NeurophXOR.java From tutorials with MIT License | 6 votes |
public static NeuralNetwork trainNeuralNetwork(NeuralNetwork ann) { int inputSize = 2; int outputSize = 1; DataSet ds = new DataSet(inputSize, outputSize); DataSetRow rOne = new DataSetRow(new double[] { 0, 1 }, new double[] { 1 }); ds.addRow(rOne); DataSetRow rTwo = new DataSetRow(new double[] { 1, 1 }, new double[] { 0 }); ds.addRow(rTwo); DataSetRow rThree = new DataSetRow(new double[] { 0, 0 }, new double[] { 0 }); ds.addRow(rThree); DataSetRow rFour = new DataSetRow(new double[] { 1, 0 }, new double[] { 1 }); ds.addRow(rFour); BackPropagation backPropagation = new BackPropagation(); backPropagation.setMaxIterations(1000); ann.learn(ds, backPropagation); return ann; }
Example #2
Source File: NeuralNetworkFactory.java From NeurophFramework with Apache License 2.0 | 6 votes |
/** * Creates and returns a new instance of Multi Layer Perceptron * @param layersStr space separated number of neurons in layers * @param transferFunctionType transfer function type for neurons * @return instance of Multi Layer Perceptron */ public static MultiLayerPerceptron createMLPerceptron(String layersStr, TransferFunctionType transferFunctionType, Class learningRule, boolean useBias, boolean connectIO) { ArrayList<Integer> layerSizes = VectorParser.parseInteger(layersStr); NeuronProperties neuronProperties = new NeuronProperties(transferFunctionType, useBias); MultiLayerPerceptron nnet = new MultiLayerPerceptron(layerSizes, neuronProperties); // set learning rule - TODO: use reflection here if (learningRule.getName().equals(BackPropagation.class.getName())) { nnet.setLearningRule(new BackPropagation()); } else if (learningRule.getName().equals(MomentumBackpropagation.class.getName())) { nnet.setLearningRule(new MomentumBackpropagation()); } else if (learningRule.getName().equals(DynamicBackPropagation.class.getName())) { nnet.setLearningRule(new DynamicBackPropagation()); } else if (learningRule.getName().equals(ResilientPropagation.class.getName())) { nnet.setLearningRule(new ResilientPropagation()); } // connect io if (connectIO) { nnet.connectInputsToOutputs(); } return nnet; }
Example #3
Source File: NetworkUtils.java From developerWorks with Apache License 2.0 | 6 votes |
/** * Returns a NxNxNxN style string showing the layer structure * of the specified network. * * @param network * @return */ public static String getNetworkStructure(NeuralNetwork<BackPropagation> network) { StringBuilder sb = new StringBuilder(); // // First the inputs if (network != null) { sb.append(network.getInputsCount()); // // Now for the hidden layers for (Layer layer : network.getLayers()) { sb.append("x"); sb.append(layer.getNeuronsCount()); } // // Finally, the outputs sb.append("x"); sb.append(network.getOutputsCount()); } return sb.toString(); }
Example #4
Source File: MNISTExample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Current iteration: " + bp.getCurrentIteration()); LOG.info("Error: " + bp.getTotalNetworkError()); LOG.info("Calculation time: " + (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "CNN_MNIST" + bp.getCurrentIteration() + ".nnet"); start = System.currentTimeMillis(); // NeuralNetworkEvaluationService.completeEvaluation(neuralNetwork, testSet); }
Example #5
Source File: NetworkUtils.java From developerWorks with Apache License 2.0 | 5 votes |
/** * Runs the specified network using the Neuroph API. * * @param network * @param input * @return */ public static <T extends NeuralNetwork<BackPropagation>> double[] runNetwork(T network, double[] input) { double[] ret; network.setInput(input); network.calculate(); // Return value is the network's output ret = network.getOutput(); if (log.isTraceEnabled()) { log.trace("Input : " + Arrays.toString(input)); log.trace("Output: " + Arrays.toString(ret)); } return ret; }
Example #6
Source File: MlpNetworkTrainer.java From developerWorks with Apache License 2.0 | 5 votes |
/** * Randomizes the network weights based on settings in {@link NetworkProperties}, rather than * letting Neuroph do it for us. * * @param network * The network (must support BackPropagation learning rule) for which its weights * are to be randomized. */ private void randomizeNetworkWeights(NeuralNetwork<BackPropagation> network) { Random randWeight = new Random(); double minWeight = randWeight.nextDouble() * (NetworkProperties.getMinWeight() - NetworkProperties.getMinMinWeight()) + NetworkProperties.getMinMinWeight(); double maxWeight = randWeight.nextDouble() * (NetworkProperties.getMaxWeight() - NetworkProperties.getMinMaxWeight()) + NetworkProperties.getMinMaxWeight(); log.info("Randomizing weights: min=" + minWeight + ", max=" + maxWeight); network.randomizeWeights(minWeight, maxWeight); }
Example #7
Source File: Cifar10Example.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Epoch no#: [{}]. Error [{}]", bp.getCurrentIteration(), bp.getTotalNetworkError()); LOG.info("Epoch execution time: {} sec", (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "_MNIST_CNN-MIC.nnet"); start = System.currentTimeMillis(); // if (bp.getCurrentIteration() % 5 == 0) // Evaluation.runFullEvaluation(neuralNetwork, testSet); }
Example #8
Source File: DigitsRecognition.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String args[]) { //create training set from Data.DIGITS DataSet dataSet = generateTrainingSet(); int inputCount = DigitData.CHAR_HEIGHT * DigitData.CHAR_WIDTH; int outputCount = DigitData.DIGITS.length; int hiddenNeurons = 19; //create neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputCount, hiddenNeurons, outputCount); //get backpropagation learning rule from network BackPropagation learningRule = neuralNet.getLearningRule(); learningRule.setLearningRate(0.5); learningRule.setMaxError(0.001); learningRule.setMaxIterations(5000); //add learning listener in order to print out training info learningRule.addListener(new LearningEventListener() { @Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { System.out.println(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations"); System.out.println("With total error " + bp.getTotalNetworkError() + '\n'); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } } }); //train neural network neuralNet.learn(dataSet); //train the network with training set testNeuralNetwork(neuralNet, dataSet); }
Example #9
Source File: IonosphereSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #10
Source File: IonosphereSample2.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #11
Source File: DiabetesSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #12
Source File: CnnMNIST.java From NeurophFramework with Apache License 2.0 | 5 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); LOG.info("Epoch no#: [{}]. Error [{}]", bp.getCurrentIteration(), bp.getTotalNetworkError()); LOG.info("Epoch execution time: {} sec", (System.currentTimeMillis() - start) / 1000.0); // neuralNetwork.save(bp.getCurrentIteration() + "_MNIST_CNN-MIC.nnet"); start = System.currentTimeMillis(); // if (bp.getCurrentIteration() % 5 == 0) // Evaluation.runFullEvaluation(neuralNetwork, testSet); }
Example #13
Source File: GermanCreditDataSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #14
Source File: IrisOptimization.java From NeurophFramework with Apache License 2.0 | 5 votes |
public static void main(String[] args) { String inputFileName = "/iris_data.txt"; DataSet irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ",", false); BackPropagation learningRule = createLearningRule(); NeuralNetwork neuralNet = new MultilayerPerceptronOptimazer<>() .withLearningRule(learningRule) .createOptimalModel(irisDataSet); neuralNet.learn(irisDataSet); Evaluation.runFullEvaluation(neuralNet, irisDataSet); }
Example #15
Source File: BrestCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #16
Source File: BackpropagationTraining.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Method that set up learning rule with given settings, learns dataset and * creates statistics from results of the test */ @Override public void testNeuralNet() { BackPropagation bp = (BackPropagation) this.setParameters(); this.getNeuralNet().setLearningRule(bp); this.getNeuralNet().learn(this.getDataset()); this.getStats().addData(new TrainingResult(bp.getCurrentIteration(), bp.getTotalNetworkError(), createMatrix())); this.getStats().calculateParameters(); }
Example #17
Source File: BackpropagationTraining.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Create instance of learning rule and setup given parameters * @return returns learning rule with predefined parameters */ @Override public LearningRule setParameters() { BackPropagation bp = new BackPropagation(); bp.setLearningRate(getSettings().getLearningRate()); bp.setMaxError(getSettings().getMaxError()); bp.setBatchMode(getSettings().isBatchMode()); bp.setMaxIterations(getSettings().getMaxIterations()); return bp; }
Example #18
Source File: BreastCancerSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #19
Source File: IrisClassificationSample.java From NeurophFramework with Apache License 2.0 | 5 votes |
/** * Runs this sample */ public static void main(String[] args) { // get the path to file with data String inputFileName = "data_sets/iris_data_normalised.txt"; // create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(4, 16, 3); // create training set from file DataSet irisDataSet = DataSet.createFromFile(inputFileName, 4, 3, ","); // attach learningn listener to print out info about error at each iteration neuralNet.getLearningRule().addListener((event)->{ BackPropagation bp = (BackPropagation) event.getSource(); System.out.println("Current iteration: " + bp.getCurrentIteration()); System.out.println("Error: " + bp.getTotalNetworkError()); }); neuralNet.getLearningRule().setLearningRate(0.5); neuralNet.getLearningRule().setMaxError(0.01); neuralNet.getLearningRule().setMaxIterations(30000); // train the network with training set neuralNet.learn(irisDataSet); neuralNet.save("irisNet.nnet"); System.out.println("Done training."); System.out.println("Testing network..."); }
Example #20
Source File: TrainNetwork.java From NeurophFramework with Apache License 2.0 | 5 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }
Example #21
Source File: PredictingTheReligionSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #22
Source File: ForestFiresSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #23
Source File: ConceptLearningAndClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #24
Source File: AnimalsClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #25
Source File: ShuttleLandingControlSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #26
Source File: GlassIdentificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #27
Source File: CarEvaluationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #28
Source File: LensesClassificationSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
@Override public void handleLearningEvent(LearningEvent event) { BackPropagation bp = (BackPropagation) event.getSource(); System.out.println(bp.getCurrentIteration() + ". iteration | Total network error: " + bp.getTotalNetworkError()); }
Example #29
Source File: AutoTrainer.java From NeurophFramework with Apache License 2.0 | 4 votes |
/** * * You can get results calling getResults() method. * * @param neuralNetwork type of neural net * @param dataSet */ public void train(DataSet dataSet) {// mozda da se vrati Training setting koji je najbolje resenje za dati dataset.?? generateTrainingSettings(); List<TrainingResult> statResults = null; DataSet trainingSet, testSet; // validationSet; if (splitTrainTest) { DataSet[] dataSplit = dataSet.split(splitPercentage, 100-splitPercentage); //opet ne radi Maven za neuroph 2.92 trainingSet = dataSplit[0]; testSet = dataSplit[1]; } else { trainingSet = dataSet; testSet = dataSet; } if (generateStatistics) { statResults = new ArrayList<>(); } int trainingNo = 0; for (TrainingSettings trainingSetting : trainingSettingsList) { System.out.println("-----------------------------------------------------------------------------------"); trainingNo++; System.out.println("##TRAINING: " + trainingNo); trainingSetting.setTrainingSet(splitPercentage); trainingSetting.setTestSet(100 - splitPercentage); //int subtrainNo = 0; for (int subtrainNo = 1; subtrainNo <= repeat; subtrainNo++) { System.out.println("#SubTraining: " + subtrainNo); MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(dataSet.getInputSize(), trainingSetting.getHiddenNeurons(), dataSet.getOutputSize()); BackPropagation bp = neuralNet.getLearningRule(); bp.setLearningRate(trainingSetting.getLearningRate()); bp.setMaxError(trainingSetting.getMaxError()); bp.setMaxIterations(trainingSetting.getMaxIterations()); neuralNet.learn(trainingSet); // testNeuralNetwork(neuralNet, testSet); // not implemented ConfusionMatrix cm = new ConfusionMatrix(new String[]{""}); TrainingResult result = new TrainingResult(trainingSetting, bp.getTotalNetworkError(), bp.getCurrentIteration(),cm); System.out.println(subtrainNo + ") iterations: " + bp.getCurrentIteration()); if (generateStatistics) { statResults.add(result); } else { results.add(result); } } if (generateStatistics) { TrainingResult trainingStats = calculateTrainingStatistics(trainingSetting, statResults); results.add(trainingStats); statResults.clear(); } } }
Example #30
Source File: SegmentChallengeSample.java From NeurophFramework with Apache License 2.0 | 4 votes |
public void run() { System.out.println("Creating training and test set from file..."); String dataSetFile = "data_sets/segment challenge.txt"; String testSetFileName = "data_sets/segment test.txt"; int inputsCount = 19; int outputsCount = 7; //Create training data set from file DataSet trainingSet = DataSet.createFromFile(dataSetFile, inputsCount, outputsCount, ","); System.out.println("Training set size: " + trainingSet.getRows().size()); trainingSet.shuffle(); //Normalizing training data set Normalizer normalizer = new MaxNormalizer(trainingSet); normalizer.normalize(trainingSet); //Create test data set from file DataSet testSet = DataSet.createFromFile(testSetFileName, inputsCount, outputsCount, ","); System.out.println("Test set size: " + testSet.getRows().size()); System.out.println("--------------------------------------------------"); testSet.shuffle(); //Normalizing training data set normalizer.normalize(testSet); System.out.println("Creating neural network..."); //Create MultiLayerPerceptron neural network MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(inputsCount, 17, 10, outputsCount); //attach listener to learning rule MomentumBackpropagation learningRule = (MomentumBackpropagation) neuralNet.getLearningRule(); learningRule.addListener((event) -> { BackPropagation bp = (BackPropagation) event.getSource(); if (event.getEventType().equals(LearningEvent.Type.LEARNING_STOPPED)) { double error = bp.getTotalNetworkError(); System.out.println("Training completed in " + bp.getCurrentIteration() + " iterations, "); System.out.println("With total error: " + formatDecimalNumber(error)); } else { System.out.println("Iteration: " + bp.getCurrentIteration() + " | Network error: " + bp.getTotalNetworkError()); } }); learningRule.setLearningRate(0.01); learningRule.setMaxError(0.001); learningRule.setMaxIterations(12000); System.out.println("Training network..."); //train the network with training set neuralNet.learn(trainingSet); System.out.println("Testing network...\n\n"); testNeuralNetwork(neuralNet, testSet); System.out.println("Done."); System.out.println("**************************************************"); // } }