org.apache.spark.ml.tuning.CrossValidatorModel Java Examples
The following examples show how to use
org.apache.spark.ml.tuning.CrossValidatorModel.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: SparkClassificationModel.java From ambiverse-nlu with Apache License 2.0 | 5 votes |
/** * * @param trainData * @param trainingSettings * @return */ public CrossValidatorModel crossValidate(DataFrame trainData, TrainingSettings trainingSettings) { //First create the pipeline and the ParamGrid createPipeline(trainData, trainingSettings); // We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance. // This will allow us to jointly choose parameters for all Pipeline stages. // A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. CrossValidator cv = new CrossValidator() .setEstimator(pipeline) .setEvaluator(evaluator) .setEstimatorParamMaps(paramGrid) .setNumFolds(trainingSettings.getNumFolds()); if(classificationMethod.equals(TrainingSettings.ClassificationMethod.LOG_REG)) { long numPositive = trainData.filter(col("label").equalTo("1.0")).count(); long datasetSize = trainData.count(); double balancingRatio = (double)(datasetSize - numPositive) / datasetSize; trainData = trainData .withColumn("classWeightCol", when(col("label").equalTo("1.0"), 1* balancingRatio) .otherwise((1 * (1.0 - balancingRatio)))); } // Run cross-validation, and choose the best set of parameters. bestModel = cv.fit(trainData); System.out.println("IS LARGER BETTER ?"+bestModel.getEvaluator().isLargerBetter()); return bestModel; }
Example #2
Source File: SparkClassificationModel.java From ambiverse-nlu with Apache License 2.0 | 5 votes |
public static void debugOutputModel(CrossValidatorModel model, TrainingSettings trainingSettings, String output) throws IOException { FileSystem fs = FileSystem.get(new Configuration()); Path statsPath = new Path(output+"debug_"+trainingSettings.getClassificationMethod()+".txt"); fs.delete(statsPath, true); FSDataOutputStream fsdos = fs.create(statsPath); PipelineModel pipelineModel = (PipelineModel) model.bestModel(); switch (trainingSettings.getClassificationMethod()) { case RANDOM_FOREST: for(int i=0; i< pipelineModel.stages().length; i++) { if (pipelineModel.stages()[i] instanceof RandomForestClassificationModel) { RandomForestClassificationModel rfModel = (RandomForestClassificationModel) (pipelineModel.stages()[i]); IOUtils.write(rfModel.toDebugString(), fsdos); logger.info(rfModel.toDebugString()); } } break; case LOG_REG: for(int i=0; i< pipelineModel.stages().length; i++) { if (pipelineModel.stages()[i] instanceof LogisticRegressionModel) { LogisticRegressionModel lgModel = (LogisticRegressionModel) (pipelineModel.stages()[i]); IOUtils.write(lgModel.toString(), fsdos); logger.info(lgModel.toString()); } } break; } fsdos.flush(); IOUtils.closeQuietly(fsdos); }
Example #3
Source File: EntitySalienceTrainingSparkRunner.java From ambiverse-nlu with Apache License 2.0 | 4 votes |
@Override protected int run() throws Exception { SparkConf sparkConf = new SparkConf() .setAppName("EntitySalienceTrainingSparkRunner") .set("spark.hadoop.validateOutputSpecs", "false") .set("spark.yarn.executor.memoryOverhead", "3072") .set("spark.rdd.compress", "true") .set("spark.core.connection.ack.wait.timeout", "600") .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") //.set("spark.kryo.registrationRequired", "true") .registerKryoClasses(new Class[] {SCAS.class, LabeledPoint.class, SparseVector.class, int[].class, double[].class, InternalRow[].class, GenericInternalRow.class, Object[].class, GenericArrayData.class, VectorIndexer.class}) ;//.setMaster("local[4]"); //Remove this if you run it on the server. TrainingSettings trainingSettings = new TrainingSettings(); if(folds != null) { trainingSettings.setNumFolds(folds); } if(method != null) { trainingSettings.setClassificationMethod(TrainingSettings.ClassificationMethod.valueOf(method)); } if(defaultConf != null) { trainingSettings.setAidaDefaultConf(defaultConf); } if(scalingFactor != null) { trainingSettings.setPositiveInstanceScalingFactor(scalingFactor); } JavaSparkContext sc = new JavaSparkContext(sparkConf); int totalCores = Integer.parseInt(sc.getConf().get("spark.executor.instances")) * Integer.parseInt(sc.getConf().get("spark.executor.cores")); // int totalCores = 4; //// trainingSettings.setFeatureExtractor(TrainingSettings.FeatureExtractor.ANNOTATE_AND_ENTITY_SALIENCE); //// trainingSettings.setAidaDefaultConf("db"); // //trainingSettings.setClassificationMethod(TrainingSettings.ClassificationMethod.LOG_REG); // trainingSettings.setPositiveInstanceScalingFactor(1); //Add the cache files to each node only if annotation is required. //The input documents could already be annotated, and in this case no caches are needed. if(trainingSettings.getFeatureExtractor().equals(TrainingSettings.FeatureExtractor.ANNOTATE_AND_ENTITY_SALIENCE)) { sc.addFile(trainingSettings.getBigramCountCache()); sc.addFile(trainingSettings.getKeywordCountCache()); sc.addFile(trainingSettings.getWordContractionsCache()); sc.addFile(trainingSettings.getWordExpansionsCache()); if (trainingSettings.getAidaDefaultConf().equals("db")) { sc.addFile(trainingSettings.getDatabaseAida()); } else { sc.addFile(trainingSettings.getCassandraConfig()); } } SQLContext sqlContext = new SQLContext(sc); FileSystem fs = FileSystem.get(new Configuration()); int partitionNumber = 3 * totalCores; if(partitions != null) { partitionNumber = partitions; } //Read training documents serialized as SCAS JavaRDD<SCAS> documents = sc.sequenceFile(input, Text.class, SCAS.class, partitionNumber).values(); //Instanciate a training spark runner TrainingSparkRunner trainingSparkRunner = new TrainingSparkRunner(); //Train a model CrossValidatorModel model = trainingSparkRunner.crossValidate(sc, sqlContext, documents, trainingSettings); //Create the model path String modelPath = output+"/"+sc.getConf().getAppId()+"/model_"+trainingSettings.getClassificationMethod(); //Delete the old model if there is one fs.delete(new Path(modelPath), true); //Save the new model model List<Model> models = new ArrayList<>(); models.add(model.bestModel()); sc.parallelize(models, 1).saveAsObjectFile(modelPath); //Save the model stats SparkClassificationModel.saveStats(model, trainingSettings, output+"/"+sc.getConf().getAppId()+"/"); return 0; }
Example #4
Source File: SparkClassificationModel.java From ambiverse-nlu with Apache License 2.0 | 4 votes |
public static void saveStats(CrossValidatorModel model, TrainingSettings trainingSettings, String output) throws IOException { double[] avgMetrics = model.avgMetrics(); double bestMetric = 0; int bestIndex=0; for(int i=0; i<avgMetrics.length; i++) { if(avgMetrics[i] > bestMetric) { bestMetric = avgMetrics[i]; bestIndex = i; } } FileSystem fs = FileSystem.get(new Configuration()); Path statsPath = new Path(output+"stats_"+trainingSettings.getClassificationMethod()+".txt"); fs.delete(statsPath, true); FSDataOutputStream fsdos = fs.create(statsPath); String avgLine="Average cross-validation metrics: "+ Arrays.toString(model.avgMetrics()); String bestMetricLine="\nBest cross-validation metric ["+trainingSettings.getMetricName()+"]: "+bestMetric; String bestSetParamLine= "\nBest set of parameters: "+model.getEstimatorParamMaps()[bestIndex]; logger.info(avgLine); logger.info(bestMetricLine); logger.info(bestSetParamLine); IOUtils.write(avgLine, fsdos); IOUtils.write(bestMetricLine, fsdos); IOUtils.write(bestSetParamLine, fsdos); PipelineModel pipelineModel = (PipelineModel) model.bestModel(); for(Transformer t : pipelineModel.stages()) { if(t instanceof ClassificationModel) { IOUtils.write("\n"+((Model) t).parent().extractParamMap().toString(), fsdos); logger.info(((Model) t).parent().extractParamMap().toString()); } } fsdos.flush(); IOUtils.closeQuietly(fsdos); debugOutputModel(model,trainingSettings, output); }
Example #5
Source File: TrainingSparkRunner.java From ambiverse-nlu with Apache License 2.0 | 4 votes |
/** * Train classification model for documents by doing cross validation and hyper parameter optimization at the same time. * The produced model contains the best model and statistics about the runs, which are later saved from the caller method. * * @param jsc * @param sqlContext * @param documents * @param trainingSettings * @return * @throws ResourceInitializationException * @throws IOException */ public CrossValidatorModel crossValidate(JavaSparkContext jsc, SQLContext sqlContext, JavaRDD<SCAS> documents, TrainingSettings trainingSettings) throws ResourceInitializationException, IOException { FeatureExtractorSpark fesr = FeatureExtractionFactory.createFeatureExtractorSparkRunner(trainingSettings); //Extract features for each document as LabelPoints DataFrame trainData = fesr.extract(jsc, documents, sqlContext); //Save the data for future use, instead of recomputing it all the time trainData.persist(StorageLevel.MEMORY_AND_DISK_SER_2()); //DataFrame trainData = sqlContext.createDataFrame(labeledPoints, LabeledPoint.class); //Wrap the classification model base on the training settings SparkClassificationModel model = new SparkClassificationModel(trainingSettings.getClassificationMethod()); //Train the be best model using CrossValidator CrossValidatorModel cvModel = model.crossValidate(trainData, trainingSettings); return cvModel; }
Example #6
Source File: JavaModelSelectionViaCrossValidationExample.java From SparkDemo with MIT License | 4 votes |
public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaModelSelectionViaCrossValidationExample") .getOrCreate(); // $example on$ // Prepare training documents, which are labeled. Dataset<Row> training = spark.createDataFrame(Arrays.asList( new JavaLabeledDocument(0L, "a b c d e spark", 1.0), new JavaLabeledDocument(1L, "b d", 0.0), new JavaLabeledDocument(2L,"spark f g h", 1.0), new JavaLabeledDocument(3L, "hadoop mapreduce", 0.0), new JavaLabeledDocument(4L, "b spark who", 1.0), new JavaLabeledDocument(5L, "g d a y", 0.0), new JavaLabeledDocument(6L, "spark fly", 1.0), new JavaLabeledDocument(7L, "was mapreduce", 0.0), new JavaLabeledDocument(8L, "e spark program", 1.0), new JavaLabeledDocument(9L, "a e c l", 0.0), new JavaLabeledDocument(10L, "spark compile", 1.0), new JavaLabeledDocument(11L, "hadoop software", 0.0) ), JavaLabeledDocument.class); // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. Tokenizer tokenizer = new Tokenizer() .setInputCol("text") .setOutputCol("words"); HashingTF hashingTF = new HashingTF() .setNumFeatures(1000) .setInputCol(tokenizer.getOutputCol()) .setOutputCol("features"); LogisticRegression lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.01); Pipeline pipeline = new Pipeline() .setStages(new PipelineStage[] {tokenizer, hashingTF, lr}); // We use a ParamGridBuilder to construct a grid of parameters to search over. // With 3 values for hashingTF.numFeatures and 2 values for lr.regParam, // this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from. ParamMap[] paramGrid = new ParamGridBuilder() .addGrid(hashingTF.numFeatures(), new int[] {10, 100, 1000}) .addGrid(lr.regParam(), new double[] {0.1, 0.01}) .build(); // We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance. // This will allow us to jointly choose parameters for all Pipeline stages. // A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. // Note that the evaluator here is a BinaryClassificationEvaluator and its default metric // is areaUnderROC. CrossValidator cv = new CrossValidator() .setEstimator(pipeline) .setEvaluator(new BinaryClassificationEvaluator()) .setEstimatorParamMaps(paramGrid).setNumFolds(2); // Use 3+ in practice // Run cross-validation, and choose the best set of parameters. CrossValidatorModel cvModel = cv.fit(training); // Prepare test documents, which are unlabeled. Dataset<Row> test = spark.createDataFrame(Arrays.asList( new JavaDocument(4L, "spark i j k"), new JavaDocument(5L, "l m n"), new JavaDocument(6L, "mapreduce spark"), new JavaDocument(7L, "apache hadoop") ), JavaDocument.class); // Make predictions on test documents. cvModel uses the best model found (lrModel). Dataset<Row> predictions = cvModel.transform(test); for (Row r : predictions.select("id", "text", "probability", "prediction").collectAsList()) { System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2) + ", prediction=" + r.get(3)); } // $example off$ spark.stop(); }