Python add gaussian noise
25 Python code examples are found related to "
add gaussian noise".
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: utils.py From DMENet with GNU Affero General Public License v3.0 | 9 votes |
def add_gaussian_noise(image): image = image.astype(np.float32) shape = image.shape[:2] mean = 0 var = random.uniform(0,0.1) sigma = var ** 0.5 gamma = 0.25 alpha = 0.75 beta = 1 - alpha gaussian = np.random.normal(loc=mean, scale = sigma, size = (shape[0], shape[1], 1)).astype(np.float32) gaussian = np.concatenate((gaussian, gaussian, gaussian), axis = 2) #gaussian_img = image * 0.75 + 0.25 * gaussian + 0.25 gaussian_img = cv2.addWeighted(image, alpha, beta * gaussian, beta, gamma) return gaussian_img # noise_sigma = 0.01 # h = image.shape[0] # w = image.shape[1] # noise = np.random.randn(h, w) * noise_sigma # noisy_image = np.zeros(image.shape, np.float64) # if len(image.shape) == 2: # noisy_image = image + noise # else: # noisy_image[:,:,0] = image[:,:,0] + noise # noisy_image[:,:,1] = image[:,:,1] + noise # noisy_image[:,:,2] = image[:,:,2] + noise # """ # print('min,max = ', np.min(noisy_image), np.max(noisy_image)) # print('type = ', type(noisy_image[0][0][0])) # """ # return noisy_image
Example 2
Source File: utils.py From taskonomy with MIT License | 6 votes |
def add_gaussian_noise_layer( input_layer, std, scope ): with tf.variable_scope( scope ) as sc: noise = tf.random_normal( shape=input_layer.get_shape(), mean=0.0, stddev=std, dtype=tf.float32 ) print('\t\t{scope}'.format( scope=scope ), noise.get_shape() ) return input_layer + noise
Example 3
Source File: utils.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def AddGaussianNoise(t, sigma, name=None): """Add i.i.d. Gaussian noise (0, sigma^2) to every entry of t. Args: t: the input tensor. sigma: the stddev of the Gaussian noise. name: optional name. Returns: the noisy tensor. """ with tf.name_scope(values=[t, sigma], name=name, default_name="add_gaussian_noise") as name: noisy_t = t + tf.random_normal(tf.shape(t), stddev=sigma) return noisy_t
Example 4
Source File: ColorAugmentersMethods.py From impy with Apache License 2.0 | 5 votes |
def addGaussianNoise(self, frame = None, coefficient = None): """ Add gaussian noise to a tensor. Args: frame: A tensor that contains an image. coefficient: A float that contains the amount of noise to add to a frame. Returns: An altered frame that has gaussian noise. """ pass
Example 5
Source File: pre_processing.py From pytorch-unet-segmentation with MIT License | 5 votes |
def add_gaussian_noise(image, mean=0, std=1): """ Args: image : numpy array of image mean : pixel mean of image standard deviation : pixel standard deviation of image Return : image : numpy array of image with gaussian noise added """ gaus_noise = np.random.normal(mean, std, image.shape) image = image.astype("int16") noise_img = image + gaus_noise image = ceil_floor_image(image) return noise_img
Example 6
Source File: calcMeanValue.py From TensorflowLite-UNet with MIT License | 5 votes |
def addGaussianNoise(src): row,col,ch= src.shape mean = 0 var = 0.1 sigma = 15 gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = src + gauss return noisy # Salt & Pepper noise function
Example 7
Source File: image_processing.py From train-mtcnn-head with MIT License | 5 votes |
def addGaussianNoise(image,percetage): G_Noiseimg = image.copy() w = image.shape[1] h = image.shape[0] G_NoiseNum=int(percetage*image.shape[0]*image.shape[1]) for i in range(G_NoiseNum): temp_x = np.random.randint(0,h) temp_y = np.random.randint(0,w) G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[0] return G_Noiseimg #dimming
Example 8
Source File: utils.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def AddGaussianNoise(t, sigma, name=None): """Add i.i.d. Gaussian noise (0, sigma^2) to every entry of t. Args: t: the input tensor. sigma: the stddev of the Gaussian noise. name: optional name. Returns: the noisy tensor. """ with tf.op_scope([t, sigma], name, "add_gaussian_noise") as name: noisy_t = t + tf.random_normal(tf.shape(t), stddev=sigma) return noisy_t
Example 9
Source File: augmentation.py From DLTK with Apache License 2.0 | 5 votes |
def add_gaussian_noise(image, sigma=0.05): """ Add Gaussian noise to an image Args: image (np.ndarray): image to add noise to sigma (float): stddev of the Gaussian distribution to generate noise from Returns: np.ndarray: same as image but with added offset to each channel """ image += np.random.normal(0, sigma, image.shape) return image
Example 10
Source File: AntBulletEnv.py From FitML with MIT License | 5 votes |
def add_gaussian_noise(mu,noiseSigma,largeNoise=False): #print ( gauss(mu, noiseSigma) ) if np.random.rand(1) < MUTATION_PROB: return gauss(mu, noiseSigma) else: return mu+0.0 #add_noise_simple = np.vectorize(add_noise_simple,otypes=[np.float])
Example 11
Source File: op_utils.py From KATE with BSD 3-Clause "New" or "Revised" License | 5 votes |
def add_gaussian_noise(X, corruption_ratio, range_=[0, 1]): X_noisy = X + corruption_ratio * np.random.normal(loc=0.0, scale=1.0, size=X.shape) X_noisy = np.clip(X_noisy, range_[0], range_[1]) return X_noisy
Example 12
Source File: utils.py From machine-learning-diff-private-federated-learning with Apache License 2.0 | 5 votes |
def AddGaussianNoise(t, sigma, noise_rate, name=None): """Add i.i.d. Gaussian noise (0, sigma^2) to every entry of t. Args: t: the input tensor. sigma: the stddev of the Gaussian noise. name: optional name. Returns: the noisy tensor. """ with tf.name_scope(values=[t, sigma], name=name, default_name="add_gaussian_noise") as name: noisy_t = t + tf.scalar_mul(noise_rate, tf.random_normal(tf.shape(t), stddev=sigma)) return noisy_t
Example 13
Source File: chart.py From talk-generator with MIT License | 5 votes |
def add_gaussian_noise_to_multidim_points(max_noise_ratio, datapoints): return [ _add_gaussian_noise_to_multidim_point(max_noise_ratio, point) for point in datapoints ]
Example 14
Source File: images_data_augmenter_seqaware.py From RecurrentGaze with MIT License | 5 votes |
def add_gaussian_noise(images: list, var: list, random_var: float=None, gauss_noise: list=None): """ Add gaussian noise to input images. If random_var and gauss_noise are given, use them to compute the final images. Otherwise, compute random_var and gauss_noise. :param images: list of images :param var: variance range from which the variance value is uniformly sampled if random_var is None. :param random_var: optional value specifying the variance multiplier. :param gauss_noise: optional value specifying the additive gaussian noise per image. :return: transformed image, random_var value, gauss_noise_out list """ if random_var is None: random_var = np.random.uniform(var[0], var[1]) mean = 0 new_images = [] gauss_noise_out = [] for i,image in enumerate(images): row, col, c = image.shape if gauss_noise is None or \ (gauss_noise is not None and row*col*c != gauss_noise[i].shape[0]*gauss_noise[i].shape[1] * gauss_noise[i].shape[2]): gauss = np.random.normal(mean, random_var * 127.5, (row, col, c)) else: gauss = gauss_noise[i] gauss_noise_out.append(gauss) gauss = gauss.reshape(row, col, c) image1 = np.clip(image + gauss, 0., 255.) new_images.append(image1) return new_images, random_var, gauss_noise_out
Example 15
Source File: data_convertors.py From DualResidualNetworks with MIT License | 5 votes |
def AddGaussianNoise(patchs, var): # A randomly generated seed. Use it for an easy performance comparison. m_seed_cpu = 8526081014239199321 m_seed_gpu = 8223752412272754 torch.cuda.manual_seed(m_seed_gpu) torch.manual_seed(m_seed_cpu) c, h, w = patchs.size() noise_pad = torch.FloatTensor(c, h, w).normal_(0, var) noise_pad = torch.div(noise_pad, 255.0) patchs+= noise_pad return patchs
Example 16
Source File: seq_preprocess.py From sanet_relocal_demo with GNU General Public License v3.0 | 4 votes |
def add_gaussian_noise(seq, rot_noise_deg=10.0, loc_displace_factor=0.1): """ Add gaussian noise for the pose of keyframes :param seq: keyframe sequences, dim: (M, 3, 4), M is the number of keyframes :param rot_noise_deg: noise in rotation (unit: deg) :param loc_displace_factor: displacement factor in translation, the unit 1 is the avg. baseline among all cameras. :return: noise sequences with dim (M, 3, 4), displacement std. """ n_frames = seq.shape[0] avg_frame_dist = 0 R, t = cam_opt.Rt(seq[0]) pre_frame_center = cam_opt.camera_center_from_Tcw(R, t) for frame_idx in range(1, n_frames): R, t = cam_opt.Rt(seq[frame_idx]) frame_center = cam_opt.camera_center_from_Tcw(R, t) dist = np.linalg.norm(frame_center - pre_frame_center) avg_frame_dist += dist avg_frame_dist /= n_frames # Set the translation noise loc_disp_noise_sigma = loc_displace_factor * avg_frame_dist # std. for random displacement disp_noise = np.random.normal(0, loc_disp_noise_sigma, size=(n_frames, 3)) # Set the rotation noise rot_noise_factor = np.deg2rad(rot_noise_deg) rot_noise = np.random.normal(0, rot_noise_factor, size=n_frames) new_seq = seq.copy() for frame_idx in range(1, n_frames): T = seq[frame_idx] R, t = cam_opt.Rt(T) # Add random noise to translation C = cam_opt.camera_center_from_Tcw(R, t) rand_C = C + disp_noise[frame_idx] # Add random noise to rotation temp_T = np.eye(4) temp_T[:3, :3] = R angle, axis, _ = trans.rotation_from_matrix(temp_T) new_angle = angle + rot_noise[frame_idx] new_axis = axis + np.random.normal(0, 0.1, size=3) new_R = trans.rotation_matrix(new_angle, new_axis)[:3, :3] new_t = cam_opt.translation_from_center(new_R, rand_C) new_seq[frame_idx][:3, :3] = new_R[:3, :3] new_seq[frame_idx][:3, 3] = new_t return new_seq, loc_disp_noise_sigma