Python calculate score
60 Python code examples are found related to "
calculate score".
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: basic_consolidation.py From watcher with Apache License 2.0 | 8 votes |
def calculate_score_node(self, node): """Calculate the score that represent the utilization level :param node: :py:class:`~.ComputeNode` instance :return: Score for the given compute node :rtype: float """ host_avg_cpu_util = self.get_compute_node_cpu_usage(node) if host_avg_cpu_util is None: resource_id = "%s_%s" % (node.uuid, node.hostname) LOG.error( "No values returned by %(resource_id)s " "for %(metric_name)s", dict( resource_id=resource_id, metric_name='host_cpu_usage')) host_avg_cpu_util = 100 total_cores_used = node.vcpus * (host_avg_cpu_util / 100.0) return self.calculate_weight(node, total_cores_used, 0, 0)
Example 2
Source File: germselection.py From pyGSTi with Apache License 2.0 | 6 votes |
def calculate_germset_score(germs, target_model=None, neighborhood=None, neighborhoodSize=5, randomizationStrength=1e-2, scoreFunc='all', opPenalty=0.0, l1Penalty=0.0): """Calculate the score of a germ set with respect to a model. """ def scoreFn(x): return _scoring.list_score(x, scoreFunc=scoreFunc) if neighborhood is None: neighborhood = [target_model.randomize_with_unitary(randomizationStrength) for n in range(neighborhoodSize)] scores = [compute_composite_germ_score(scoreFn, model=model, partialGermsList=germs, opPenalty=opPenalty, l1Penalty=l1Penalty) for model in neighborhood] return max(scores)
Example 3
Source File: similarity.py From timesketch with Apache License 2.0 | 6 votes |
def calculate_score(lsh, minhash, total_num_events): """Calculate a score based on Jaccard distance. The score is calculated based on how many similar events that there are for the event being scored. This is called neighbours and we simply calculate how many neighbours the event has divided by the total events in the LSH. Args: lsh: instance of datasketch.lsh.MinHashLSH minhash: instance of datasketch.minhash.MinHash total_num_events: integer of how many events in the LSH Returns: A float between 0 and 1. """ neighbours = lsh.query(minhash) return float(len(neighbours)) / float(total_num_events)
Example 4
Source File: compare.py From q2mm with MIT License | 6 votes |
def calculate_score(r_data, c_data): """ *** Depracated: All of this is in compare_data() Calculates the objective function score. """ score_tot = 0. for r_datum, c_datum in zip(r_data, c_data): # Could add a check here to assure that the data points are aligned. # Ex.) assert r_datum.ind_1 == c_datum.ind_1, 'Oh no!' # For torsions, ensure the difference between -179 and 179 is 2, not # 358. if c_datum.typ == 't': diff = abs(r_datum.val - c_datum.val) if diff > 180.: diff = 360. - diff else: diff = r_datum.val - c_datum.val score_ind = r_datum.wht**2 * diff**2 score_tot += score_ind logger.log(1, '>>> {} {} {}'.format(r_datum, c_datum, score_ind)) logger.log(5, 'SCORE: {}'.format(score_tot)) return score_tot
Example 5
Source File: inception_utils.py From BigGAN-PyTorch with MIT License | 6 votes |
def calculate_inception_score(pred, num_splits=10): scores = [] for index in range(num_splits): pred_chunk = pred[index * (pred.shape[0] // num_splits): (index + 1) * (pred.shape[0] // num_splits), :] kl_inception = pred_chunk * (np.log(pred_chunk) - np.log(np.expand_dims(np.mean(pred_chunk, 0), 0))) kl_inception = np.mean(np.sum(kl_inception, 1)) scores.append(np.exp(kl_inception)) return np.mean(scores), np.std(scores) # Loop and run the sampler and the net until it accumulates num_inception_images # activations. Return the pool, the logits, and the labels (if one wants # Inception Accuracy the labels of the generated class will be needed)
Example 6
Source File: metric.py From dsb2018_topcoders with MIT License | 6 votes |
def calculate_cell_score_selim(y_true, y_pred, num_threads=32, ids=None): yps = [] for m in range(len(y_true)): yps.append((y_true[m].copy(), y_pred[m].copy())) pool = Pool(num_threads) results = pool.map(calculate_jaccard, yps) if ids: import pandas as pd s_iou = np.argsort(results) d = [] for i in range(len(s_iou)): id = ids[s_iou[i]] res = results[s_iou[i]] d.append([id, res]) pd.DataFrame(d, columns=["ID", "METRIC_SCORE"]).to_csv("gt_vs_oof.csv", index=False) return np.array(results).mean()
Example 7
Source File: generic.py From DeTTECT with GNU General Public License v3.0 | 6 votes |
def calculate_score(list_detections, zero_value=0): """ Calculates the average score in the given list which may contain multiple detection dictionaries :param list_detections: list :param zero_value: the value when no scores are there, default 0 :return: average score """ avg_score = 0 number = 0 for v in list_detections: score = get_latest_score(v) if score is not None and score >= 0: avg_score += score number += 1 avg_score = int(round(avg_score / number, 0) if number > 0 else zero_value) return avg_score
Example 8
Source File: awd_lstm_utils.py From end2end-asr-pytorch with MIT License | 6 votes |
def calculate_lm_score(seq, lm, id2label): """ seq: (1, seq_len) id2label: map """ # print(seq) # for char in seq[0]: # print(char.item()) seq_str = "".join(id2label[char.item()] for char in seq[0]).replace(constant.PAD_CHAR,"").replace(constant.SOS_CHAR,"").replace(constant.EOS_CHAR,"") seq_str = seq_str.replace(" ", " ") if seq_str == "": return -999 score = lm.evaluate(seq_str) # print(seq_str) return -1 * (score / len(seq_str.split())), len(seq_str.split())
Example 9
Source File: SVIM_merging.py From svim with GNU General Public License v3.0 | 6 votes |
def calculate_score_insertion(main_score, translocation_distances, translocation_stds, destination_stds): """Calculate the score of a merged insertion or duplication detected from an insertion. Parameters: - main_score - score of the underlying main insertion - translocation_distances - mean distance of the translocation clusters flanking the main insertion (left) - translocation_stds - standard deviation of the translocation clusters flanking the main insertion (left) - destination_stds - standard deviations of the left and right translocation destinations""" #scale translocation distance to [0, 1] range td0 = max(0, 100 - translocation_distances[0]) / 100 td1 = max(0, 100 - translocation_distances[1]) / 100 #scale translocation std to [0, 1] range ts0 = max(0, 100 - translocation_stds[0]) / 100 ts1 = max(0, 100 - translocation_stds[1]) / 100 #scale destination stds to [0, 1] range ds0 = max(0, 100 - destination_stds[0]) / 100 ds1 = max(0, 100 - destination_stds[1]) / 100 #calculate final score as product of components product = td0 * td1 * ts0 * ts1 * ds0 * ds1 final_score = pow(product, 1/6) * main_score return final_score
Example 10
Source File: calculations.py From cvsslib with GNU Lesser General Public License v3.0 | 6 votes |
def calculate_modified_impact_sub_score(scope: ModifiedScope, modified_conf: ModifiedConfidentialityImpact, modified_integ: ModifiedIntegrityImpact, modified_avail: ModifiedAvailabilityImpact, conf_req: ConfidentialityRequirement, integ_req: IntegrityRequirement, avail_req: AvailabilityRequirement): modified = min( 1 - (1 - modified_conf * conf_req) * (1 - modified_integ * integ_req) * (1 - modified_avail * avail_req), D("0.915") ) if scope == ModifiedScope.UNCHANGED.value: return IMPACT_UNCHANGED_COEFFECIENT * modified else: return IMPACT_CHANGED_COEFFECIENT * (modified - D("0.029")) - D("3.25") * D(math.pow(modified - D(0.02), 15))
Example 11
Source File: dummy_scoring_container.py From watcher with Apache License 2.0 | 6 votes |
def calculate_score(self, features): LOG.debug('Calculating score, features: %s', features) # Basic input validation try: flist = jsonutils.loads(features) except Exception as e: raise ValueError(_('Unable to parse features: %s') % e) if type(flist) is not list: raise ValueError(_('JSON list expected in feature argument')) if len(flist) < 1: raise ValueError(_('At least one feature is required')) # Calculate the result result = self._aggregate_function(flist) # Return the aggregated result return jsonutils.dumps([result])
Example 12
Source File: basic_consolidation.py From watcher with Apache License 2.0 | 6 votes |
def calculate_score_instance(self, instance): """Calculate Score of virtual machine :param instance: the virtual machine :return: score """ instance_cpu_utilization = self.get_instance_cpu_usage(instance) if instance_cpu_utilization is None: LOG.error( "No values returned by %(resource_id)s " "for %(metric_name)s", dict( resource_id=instance.uuid, metric_name='instance_cpu_usage')) instance_cpu_utilization = 100 total_cores_used = instance.vcpus * (instance_cpu_utilization / 100.0) return self.calculate_weight(instance, total_cores_used, 0, 0)
Example 13
Source File: calculations.py From cvsslib with GNU Lesser General Public License v3.0 | 6 votes |
def calculate_base_score(run_calculation, scope: Scope, privilege: PrivilegeRequired): impact_sub_score = run_calculation(calculate_impact_sub_score) if impact_sub_score <= 0: return 0 else: override = {} if scope == Scope.CHANGED.value: # Ok, so the privilege enum needs slightly different values depending on the scope. God damn. modified_privilege = PrivilegeRequired.extend("PrivilegeRequired", {"LOW": D("0.68"), "HIGH": D("0.50")}) privilege = getattr(modified_privilege, PrivilegeRequired(privilege).name) override[PrivilegeRequired] = privilege.value exploitability_sub_score = run_calculation(calculate_exploitability_sub_score, override=override) combined_score = impact_sub_score + exploitability_sub_score if scope == Scope.CHANGED.value: return roundup(min(D("1.08") * combined_score, 10)) else: return roundup(min(combined_score, 10))
Example 14
Source File: scrabble.py From Scrabble with MIT License | 6 votes |
def calculate_word_score(self): #Calculates the score of a word, allowing for the impact by premium squares. global LETTER_VALUES, premium_spots word_score = 0 for letter in self.word: for spot in premium_spots: if letter == spot[0]: if spot[1] == "TLS": word_score += LETTER_VALUES[letter] * 2 elif spot[1] == "DLS": word_score += LETTER_VALUES[letter] word_score += LETTER_VALUES[letter] for spot in premium_spots: if spot[1] == "TWS": word_score *= 3 elif spot[1] == "DWS": word_score *= 2 self.player.increase_score(word_score)
Example 15
Source File: stemmedsynword.py From mishkal with GNU General Public License v3.0 | 6 votes |
def calculate_score(self, ): """ Recalculate score. @return: nothing @rtype: void """ self.score = 0 # the score is calculated # # syntaxic relations self.score = len(self.next)*10 #self.has_next()*10 self.score += len(self.previous)*10#(self.previous>0)*10 self.score += len(self.sem_previous)*100 #(self.sem_previous>0) self.score += len(self.sem_next)*100 # self.has_sem_next()*100 self.score += round(math.log(self.freq+1), 2) self.score += self.is_stopword()*50 self.add_syntax("Scr:"+str(self.score))
Example 16
Source File: multisegbeam.py From sgnmt with Apache License 2.0 | 6 votes |
def calculate_score(self, pred_weights, defaults = []): """Calculates the full word score for this continuation using the predictor stub scores. Args: pred_weights (list): Predictor weights. Length of this list must match the number of stubs defaults (list): Score which should be used if a predictor stub is set to None Returns: float. Full score of this continuation, or an optimistic estimate if the continuation is not complete. """ return sum(map(lambda x: x[0]*x[1], zip(pred_weights, [s.score if s else defaults[pidx] for pidx, s in enumerate(self.pred_stubs)])))
Example 17
Source File: boundary_utils.py From anomalydetector with MIT License | 6 votes |
def calculate_anomaly_score(value, expected_value, unit, is_anomaly): if not is_anomaly: return 0.0 distance = np.abs(expected_value - value) margins = [calculate_margin(unit, i) for i in range(101)][::-1] lb = bisect.bisect_left(margins, distance) if lb == 0: return 0 elif lb >= 100: return 1.0 else: a, b = margins[lb-1], margins[lb] score = lb - 1 + (distance - a) / (b - a) return score / 100.0
Example 18
Source File: DecodeGreedyCoverage.py From shuca with Apache License 2.0 | 5 votes |
def CalculateScore(self, term_vector, weight): score = 0 for key, value in term_vector.items(): score = score + weight[key] return score
Example 19
Source File: core.py From antismash with GNU Affero General Public License v3.0 | 5 votes |
def calculate_synteny_score(hitgroups: Dict[int, List[int]], hitpositions: List[Tuple[int, int]], core_genes_found: List[bool]) -> int: """ Calculate the synteny score of a ranking Scores will only be non-zero if more than one hit exists. Each query and each hit can only be considered once for scoring. Arguments: hitgroups: a dictionary mapping each unique Query index to a list of Subject indices that hit that Query hitpositions: a list of Query, Subject index pairs ordered by best pairing core_genes_found: a list of booleans for each pair in hitpositions, representing whether a core gene was found in that pairing Returns: a int representing the synteny score """ scored_queries = set() # type: Set[int] scored_hits = set() # type: Set[int] synteny_score = 0 for i, pos in enumerate(hitpositions[:-1]): query, subject = pos next_query, next_subject = hitpositions[i + 1] # Check if a gene homologous to this gene has already been # scored for synteny in the previous entry if subject in hitgroups[next_query] or query in scored_queries or subject in scored_hits: continue if (abs(query - next_query) < 2) and abs(query - next_query) == abs(subject - next_subject): synteny_score += 1 if core_genes_found[i] or core_genes_found[i + 1]: synteny_score += 1 scored_queries.add(query) scored_hits.add(subject) return synteny_score
Example 20
Source File: 24_03_Trim.py From Coursera-Bioinformatics with GNU General Public License v3.0 | 5 votes |
def calculateLinearScore(self, peptide, spectrumDict): theoSpectrumDict = self.LinearSpectrumDict(peptide) score = 0 for s, v in theoSpectrumDict.items(): v0 = spectrumDict.get(s, 0) if v0 >= v: score += v else: score += v0 return score
Example 21
Source File: 24_02_LinearScore.py From Coursera-Bioinformatics with GNU General Public License v3.0 | 5 votes |
def calculateScore(self, peptide, spectrum): theoSpectrumDict = self.LinearSpectrumDict(peptide) score = 0 spectrumDict = dict() for s in spectrum: spectrumDict[s] = spectrumDict.get(s, 0) + 1 for s, v in theoSpectrumDict.items(): v0 = spectrumDict.get(s, 0) if v0 >= v: score += v else: score += v0 return score
Example 22
Source File: metric.py From torchgan with MIT License | 5 votes |
def calculate_score(self, x): r""" Subclasses must override this function and provide their own score calculation. :raises NotImplementedError: If the subclass doesn't override this function. """ raise NotImplementedError
Example 23
Source File: score.py From BIGSI with MIT License | 5 votes |
def calculate_score(self, score_counter, convert): max_score = copy.copy(self.MATCH * sum(score_counter["1"])) min_score = copy.copy(max_score) mean_score = copy.copy(min_score) SNP_t = 31 + self.kmer_adjust # correct for the 'remove_short_ones' max_total_N_snps = 0 min_total_N_snps = 0 for i in score_counter["0"]: min_N_snps = float(i) / SNP_t max_N_snps = (i - SNP_t) + 1 if max_N_snps < min_N_snps: max_N_snps = min_N_snps max_total_N_snps += max_N_snps min_total_N_snps += min_N_snps mean_N_snps = min_N_snps + 0.05 * max_N_snps max_penalty = self.MISMATCH * (max_N_snps) min_penalty = self.MISMATCH * (min_N_snps) mean_penalty = self.MISMATCH * (mean_N_snps) points_for_max = self.MATCH * (i - max_penalty) points_for_min = self.MATCH * (i - min_penalty) points_for_mean = self.MATCH * (i - mean_penalty) max_score = round(max_score - min_penalty + points_for_min, 2) min_score = round(min_score - max_penalty + points_for_max, 2) mean_score = round(mean_score - mean_penalty + points_for_mean, 2) return { "score": round(mean_score * convert, 2), "min_score": round(min_score * convert, 2), "max_score": round(max_score * convert, 2), "max_mismatches": math.ceil(max_total_N_snps), "min_mismatches": math.floor(min_total_N_snps), "mismatches": math.ceil( math.ceil(min_total_N_snps) + (0.05 * math.floor(max_total_N_snps)) ), }
Example 24
Source File: model.py From flow-gan with MIT License | 5 votes |
def calculate_inception_and_mode_score(self): #to get mode scores add code to load your favourite mnist classifier in inception_score.py if self.dataset_name == "mnist": return [0.0, 0.0, 0.0, 0.0] sess = self.sess all_samples = [] for i in range(18): if self.prior == "uniform": batch_z = np.random.uniform(-1, 1, [self.batch_size, self.z_dim]) \ .astype(np.float32) elif self.prior == "logistic": batch_z = np.random.logistic(loc=0.,scale=1.0,size=[self.batch_size, self.z_dim]) \ .astype(np.float32) elif self.prior == "gaussian": batch_z = np.random.normal(0.0, 1.0, size=(self.batch_size , self.z_dim)) else: print("ERROR: Unrecognized prior...exiting") exit(-1) samples_curr = self.sess.run( [self.sampler], feed_dict={ self.z: batch_z,} ) all_samples.append(samples_curr[0]) all_samples = np.concatenate(all_samples, axis=0) # return all_samples all_samples = (all_samples*255.).astype('int32') return inception_score.get_inception_and_mode_score(list(all_samples), sess=sess)
Example 25
Source File: global_optimization.py From DVCNN_Lane_Detection with Apache License 2.0 | 5 votes |
def calculate_rois_score(self): """ Calculate the each rois' score according the roi length and angle :return: """ merged_roi_list = self.__merge_rois_by_wlink(self.__rois) result = [] for index, roi in enumerate(merged_roi_list): lane_length = roi.get_roi_line_length() top_image_height = 350.0 rho = roi.get_roi_line_angle() result.append((roi, 0.7*self.__calculate_wlen_l(s_l=lane_length, h=top_image_height) + 0.3*self.__calculate_rho_l(rho=rho))) return result
Example 26
Source File: FunctionCandidate.py From smda with BSD 2-Clause "Simplified" License | 5 votes |
def calculateScore(self): score = 0 score += 10000 if self.is_symbol else 0 score += 1000 if self.is_stub else 0 score += 100 if self.lang_spec is not None else 0 score += self.getFunctionStartScore() num_call_refs = len(self.call_ref_sources) if num_call_refs >= 10: call_ref_score = 10 + int(num_call_refs / 10) else: call_ref_score = num_call_refs score += 10 * call_ref_score score += 1 if self.alignment else 0 return score
Example 27
Source File: metric.py From dsb2018_topcoders with MIT License | 5 votes |
def calculate_cell_score_kaggle(y_true, y_pred, num_threads=32): yps = [] for m in range(len(y_true)): yps.append((y_true[m].copy(), y_pred[m].copy())) pool = Pool(num_threads) results = pool.map(score_kaggle, yps) return np.mean(results)
Example 28
Source File: tip_pos_tagger.py From yelp with GNU Lesser General Public License v2.1 | 5 votes |
def calculate_word_score(self, tagged_word): """ Takes a tagged word (in the form of a pair (word, tag)) and returns the score associated to that word. In other words it returns how positive or negative the word is in the range [-1, 1] where -1 is the most negative, 1 is the most positive and 0 is neutral. The tag refers to the part of speech tag associated to the word, i.e. noun, verb, adjective, etc. :rtype : float :param tagged_word: the word from which we want the score and its part of speech tag :return: a float number that represents how positive or negative is the word """ word = tagged_word[0].lower() tag = tagged_word[1] if tag.startswith('JJ'): tag = 'a' else: return 0 dict_word = tag + '/' + word total_score = 0 if dict_word in self.sentiment_words: score = self.sentiment_words[dict_word] total_score = score[0] - score[1] return total_score
Example 29
Source File: fuzzy.py From aws-shell with Apache License 2.0 | 5 votes |
def calculate_score(search_string, word): """Calculate how well the search string matches the word.""" # See the module docstring for a high level description # of what we're trying to do. # * If the search string is larger than the word, we know # immediately that this can't be a match. if len(search_string) > len(word): return 0 original_word = word score = 1 search_index = 0 while True: scale = 1.0 search_char = search_string[search_index] i = word.find(search_char) if i < 0: return 0 if i > 0 and word[i - 1] == '-': scale = 0.95 else: scale = 1 - (i / float(len(word))) score *= scale word = word[i + 1:] search_index += 1 if search_index >= len(search_string): break # The more characters that matched the word, the better # so prefer more complete matches. completion_scale = 1 - (len(word) / float(len(original_word))) score *= completion_scale return score
Example 30
Source File: SVIM_clustering.py From svim with GNU General Public License v3.0 | 5 votes |
def calculate_score(cluster, std_span, std_pos, span, type): if std_span == None or std_pos == None: span_deviation_score = 0 pos_deviation_score = 0 else: span_deviation_score = 1 - min(1, std_span / span) pos_deviation_score = 1 - min(1, std_pos / span) if type == "INV": directions = [signature.direction for signature in cluster] direction_counts = [0, 0, 0, 0, 0] for direction in directions: if direction == "left_fwd": direction_counts[0] += 1 if direction == "left_rev": direction_counts[1] += 1 if direction == "right_fwd": direction_counts[2] += 1 if direction == "right_rev": direction_counts[3] += 1 if direction == "all": direction_counts[4] += 1 left_signatures = direction_counts[0] + direction_counts[1] right_signatures = direction_counts[2] + direction_counts[3] valid_signatures = min(left_signatures, right_signatures) + direction_counts[4] num_signatures = min(80, valid_signatures) else: num_signatures = min(80, len(cluster)) return num_signatures + span_deviation_score * (num_signatures / 8) + pos_deviation_score * (num_signatures / 8)
Example 31
Source File: press_model.py From aca with MIT License | 5 votes |
def calculate_press_score(t_author_press): press_list = [] for k,v in t_author_press.items(): press_list.extend(v) c_press = Counter(press_list) #len_interest = len(interest) press_score = {} for k,v in c_press.items(): num = math.exp(-1/v) press_score.setdefault(k,num) return press_score,c_press
Example 32
Source File: press_model.py From aca with MIT License | 5 votes |
def calculate_interest_score(interest_count,length): interest_idf = {} for k,v in interest_count.items(): idf = math.exp(-1/v**3) interest_idf.setdefault(k,idf) return interest_idf
Example 33
Source File: forms.py From hypha with BSD 3-Clause "New" or "Revised" License | 5 votes |
def calculate_score(self, data): scores = list() for field in self.instance.score_fields: score = data.get(field.id)[1] # Include NA answers as 0. if score == NA: score = 0 scores.append(score) try: return sum(scores) / len(scores) except ZeroDivisionError: return NA
Example 34
Source File: model.py From ProductGenius with MIT License | 5 votes |
def calculate_pg_score(self, pg_average=3.0, C=10): """Calculate Product Genius score with bayesian average""" stars, n_scores = self.get_total_stars() pg_score = (C * pg_average + stars)/(C + n_scores) return pg_score
Example 35
Source File: model.py From ProductGenius with MIT License | 5 votes |
def calculate_score_distribution(self): """Calculates the distribution of 1,2,3,4,5 star reviews""" distribution = [0, 0, 0, 0, 0] for review in self.reviews: distribution[review.score - 1] += 1 return distribution
Example 36
Source File: nlp.py From ReSAN with Apache License 2.0 | 5 votes |
def calculate_idx_seq_f1_score(input_idx_seq, label_idx_seq, recall_factor=1.): assert len(input_idx_seq) > 0 and len(label_idx_seq)>0 # recall recall_counter = sum(1 for label_idx in label_idx_seq if label_idx in input_idx_seq) precision_counter = sum(1 for input_idx in input_idx_seq if input_idx in label_idx_seq) recall = 1.0*recall_counter/ len(label_idx_seq) precision = 1.0*precision_counter / len(input_idx_seq) recall = recall/recall_factor if recall + precision <= 0.: return 0. else: return 2.*recall*precision / (recall + precision)
Example 37
Source File: problem_335.py From daily-coding-problem with MIT License | 5 votes |
def calculate_score(node: str, g: Graph, page_scores: Dict): agg_score = 0 for other in g.edges: if node in g.edges[other]: agg_score += page_scores[other] / len(g.edges[other]) score = ((1 - DAMPING) / len(g.edges)) + (DAMPING * agg_score) return score
Example 38
Source File: lstm.py From user-behavior-anomaly-detector with MIT License | 5 votes |
def calculate_score(self, real, predicted, score): rmse = math.sqrt(mean_squared_error(real, predicted)) # total = helpers.sigmoid(1/rmse * scores[i]) * 100 total = round(rmse * score / 100, 2) return total
Example 39
Source File: Naive_algo.py From SKF-Chatbot with GNU Affero General Public License v3.0 | 5 votes |
def calculate_class_score(Question, class_name, show_details=True): score = 0 # tokenize each word in our new Question for word in nltk.word_tokenize(Question): # check to see if the stem of the word is in any of our classes if stemmer.stem(word.lower()) in class_words[class_name]: # treat each word with same weight score += 1 if show_details: print (" match: %s" % stemmer.stem(word.lower() )) return score # we can now calculate a score for a new Question
Example 40
Source File: TrainMood.py From QQZoneMood with MIT License | 5 votes |
def calculate_score_for_each_mood(self): """ 利用谷歌nima模型对图片进行评分 paper: https://arxiv.org/abs/1709.05424 pytorch model: https://github.com/truskovskiyk/nima.pytorch.git 计算每条说说中图片的平均分 对于没有图片的按均值进行填充 :return: """ # nima模型预测结果文件 self.IMAGE_SCORE_FILE_PATH = '/Users/maicius/code/nima.pytorch/nima/result_dict.json' with open(self.IMAGE_SCORE_FILE_PATH, 'r', encoding='utf-8') as r: self.image_score_dict = json.load(r) self.image_score_df = pd.DataFrame(self.image_score_dict) mean_score = self.image_score_df[self.image_score_df['score'] != -1].mean()[0] self.image_score_df.loc[self.image_score_df.score == -1, 'score'] = mean_score tid_list = self.mood_data_df['tid'].values for tid in tid_list: scores = self.image_score_df[self.image_score_df.image.str.contains(tid)].score if len(scores) > 0: self.mood_data_df.loc[self.mood_data_df.tid == tid, 'score'] = round(scores.mean(), 2) self.mood_data_df.fillna(mean_score) print("score shape:", self.mood_data_df.shape) self.mood_data_df.to_csv(self.MOOD_DATA_SCORE_FILE_NAME)
Example 41
Source File: pyspantask.py From py-span-task with GNU General Public License v2.0 | 5 votes |
def calculate_score(s, t, allow_sloppy_spelling, heed_order): # Allow one typo: omission, addition, substitution of a character, or # transposition of two characters. if allow_sloppy_spelling: errors_allowed = 1 else: errors_allowed = 0 # Collect correctly recalled words: hits = [] for w1 in s: for w2 in t: if damerau_levenshtein(w1,w2) <= errors_allowed: hits.append(w2) continue # Remove duplicates from list of hits (although duplicates should # not occur when the experiment is properly configured): seen = set() seen_add = seen.add hits = [x for x in hits if not (x in seen or seen_add(x))] if heed_order: # Subtract points for items recalled in incorrect order: correct = len(t) - damerau_levenshtein(hits, t) else: correct = len(hits) return correct
Example 42
Source File: evaluate.py From object_centric_VAD with MIT License | 5 votes |
def calculate_score(loss_file,reverse,smoothing): if not os.path.isdir(loss_file): loss_file_path = loss_file else: optical_result = compute_auc(loss_file,reverse,smoothing) loss_file_path = optical_result.loss_file print('##### optimal result and model = {}'.format(optical_result)) dataset, psnr_records, gt = load_psnr_gt(loss_file=loss_file_path) # the number of videos num_videos = len(psnr_records) scores = np.array([], dtype=np.float32) labels = np.array([], dtype=np.int8) # video normalization for i in range(num_videos): distance = psnr_records[i] distance = (distance - distance.min()) / (distance.max() - distance.min()) if reverse: distance=1-distance if smoothing: distance = score_smoothing(distance) scores = np.concatenate((scores[:], distance[DECIDABLE_IDX:-DECIDABLE_IDX]), axis=0) labels = np.concatenate((labels[:], gt[i][DECIDABLE_IDX:-DECIDABLE_IDX]), axis=0) mean_normal_scores = np.mean(scores[labels == 0]) mean_abnormal_scores = np.mean(scores[labels == 1]) print('mean normal scores = {}, mean abnormal scores = {}, ' 'delta = {}'.format(mean_normal_scores, mean_abnormal_scores, mean_normal_scores - mean_abnormal_scores))
Example 43
Source File: shutit_exam.py From shutit with MIT License | 5 votes |
def calculate_score(self): max_score = 0.0 total_score = 0.0 for stage in self.stages: max_score += stage.difficulty # If they succeeded, start with the diffulty score (100%) if stage.result == 'OK': stage.score = stage.difficulty for item in range(0,stage.num_resets): item = item # pylint stage.score = stage.score - (stage.score * stage.reduction_per_reset) for item in range(0,stage.num_hints): stage.score = stage.score - (stage.score * stage.reduction_per_hint) total_time = stage.end_time - stage.start_time total_time -= stage.grace_period if total_time > 0: num_minutes = total_time / 60 num_seconds = total_time % 60 num_minutes = num_minutes + (num_seconds / 60) while num_minutes > 1: num_minutes -= 1 stage.score = stage.score - (stage.score * stage.reduction_per_minute) if num_minutes > 0: stage.score = stage.score - (stage.score * stage.reduction_per_minute * num_minutes) total_score = total_score + stage.score else: stage.score = 0 self.final_score = total_score / max_score * 100.00 return self.final_score
Example 44
Source File: utils.py From torchbench with Apache License 2.0 | 5 votes |
def calculate_inception_score( sample_dataloader, test_dataloader, device="cuda", num_images=50000, splits=10, ): """Calculate the inception score for a model's samples. Args: sample_dataloader: Dataloader for the generated image samples from the model. test_dataloader: Dataloader for the real images from the dataset to compare to. device: to perform the evaluation (e.g. 'cuda' for GPU). num_images: number of images to evaluate. splits: nu,ber of splits to perform for the evaluation. Returns: dict: Dictionary with key being the metric name, and values being the metric scores. """ inception_model = InceptionScore(device=device) inception_model.eval() preds = np.zeros((num_images, 1000)) for i, batch in enumerate(sample_dataloader, 0): batch = batch.to(device=device) batchv = Variable(batch) batch_size_i = batch.size()[0] predictions = inception_model(batchv) start = i * test_dataloader.batch_size n_predictions = len(preds[start : start + batch_size_i]) preds[start : start + batch_size_i] = predictions[:n_predictions] split_scores = [] for k in range(splits): part = preds[ k * (num_images // splits) : (k + 1) * (num_images // splits), : ] py = np.mean(part, axis=0) scores = [] for i in range(part.shape[0]): pyx = part[i, :] scores.append(entropy(pyx, py)) split_scores.append(np.exp(np.mean(scores))) return {"Inception Score": np.mean(split_scores)}
Example 45
Source File: xblock_jupyter_graded.py From jupyter-edx-grader-xblock with BSD 3-Clause "New" or "Revised" License | 5 votes |
def calculate_score(self): return Score(raw_earned=self.student_score, raw_possible=self.raw_possible) # ----------- Views -----------
Example 46
Source File: mc_perceptron.py From multiclass_perceptron with MIT License | 5 votes |
def calculate_fbeta_score(self): """ Calculates the fbeta score of the classifier by running algorithm against test set and comparing the output to the actual categorization. Calculated by taking the harmonic mean of the precision and recall values. """ print "F-BETA SCORES: " for c in self.precision: self.fbeta_score[c] = 2 * ((self.precision[c] * self.recall[c]) / (self.precision[c] + self.recall[c])) print "%s Class F-Beta Score:", self.fbeta_score[c]
Example 47
Source File: FeedRecordedFuture.py From content with MIT License | 5 votes |
def calculate_indicator_score(self, risk_from_feed): """Calculates the Dbot score of an indicator based on its Risk value from the feed. Args: risk_from_feed (str): The indicator's risk value from the feed Returns: int. The indicator's Dbot score """ dbot_score = 0 risk_from_feed = int(risk_from_feed) if risk_from_feed >= self.threshold or risk_from_feed >= 65: dbot_score = 3 elif risk_from_feed >= 5: dbot_score = 2 return dbot_score
Example 48
Source File: calculations.py From cvsslib with GNU Lesser General Public License v3.0 | 5 votes |
def calculate_environmental_score(run_calculation, collat_damage: CollateralDamagePotential, target_dist: TargetDistribution): adjusted_base_score = run_calculation(calculate_base_score, calculate_adjusted_impact) adjusted_temporal = run_calculation(calculate_temporal_score, adjusted_base_score) return round( (adjusted_temporal + (10 - adjusted_temporal) * collat_damage) * target_dist, 1 )
Example 49
Source File: utils.py From atari-representation-learning with MIT License | 5 votes |
def calculate_multiclass_f1_score(preds, labels): preds = torch.argmax(preds, dim=1).detach().numpy() labels = labels.numpy() f1score = compute_f1_score(labels, preds, average="weighted") return f1score
Example 50
Source File: least_used.py From workload-collocation-agent with Apache License 2.0 | 5 votes |
def calculate_least_used_score( requested_fraction: Dict[ResourceType, float], weights: Dict[ResourceType, float]) \ -> Tuple[Dict[ResourceType, float], float]: """Least used score based on requested_fraction and weigths for resources.""" weights_sum = sum([weight for weight in weights.values()]) free_fraction = {dim: 1.0 - fraction for dim, fraction in requested_fraction.items()} least_used_score = \ sum([free_fraction * weights[dim] for dim, free_fraction in free_fraction.items()]) \ / weights_sum return free_fraction, least_used_score
Example 51
Source File: models.py From arguman.org with GNU Affero General Public License v3.0 | 4 votes |
def calculate_score(self): """The hot formula. Should match the equivalent function in postgres.""" s = self.premises.exclude(user__id=self.user.id).count() if s < 1: return 0 order = log(max(abs(s), 1), 10) sign = 1 if s > 0 else -1 if s < 0 else 0 seconds = self.epoch_seconds(self.date_creation) - 1134028003 return round(sign * order + seconds / 45000, 7)
Example 52
Source File: app.py From ESPN-Fantasy-Basketball with MIT License | 4 votes |
def calculate_score(team1, team2, categories, league_id): wins = 0 losses = 0 ties = 0 won_margin = [] lost_margin = [] tied_margin = [] bad_categories = ['FGMI', 'FTMI', '3PMI', 'TO', 'EJ', 'FF', 'PF', 'TF', 'DQ'] bad_categories_idx = [] for bad_category in bad_categories: try: bad_categories_idx.append(categories.index(bad_category)) except ValueError: pass for idx, (a, b) in enumerate(zip(team1, team2)): try: a, b = float(a), float(b) except ValueError as e: app.logger.error('%s - %s', league_id, str(e)) a, b = 0.0, 0.0 # When comparing turnovers, having a smaller value is a "win". if idx in bad_categories_idx: if a < b: wins += 1 won_margin.append((categories[idx], b - a)) elif a == b: ties += 1 tied_margin.append((categories[idx], b - a)) else: losses += 1 lost_margin.append((categories[idx], b - a)) else: if a > b: wins += 1 won_margin.append((categories[idx], round((a - b), 4))) elif a == b: ties += 1 tied_margin.append((categories[idx], round((a - b), 4))) else: losses += 1 lost_margin.append((categories[idx], round((a - b), 4))) score = (wins, losses, ties), won_margin, lost_margin, tied_margin return score # Run the Flask app.
Example 53
Source File: sascorer.py From icml18-jtnn with MIT License | 4 votes |
def calculateScore(m): if _fscores is None: readFragmentScores() # fragment score fp = rdMolDescriptors.GetMorganFingerprint(m,2) #<- 2 is the *radius* of the circular fingerprint fps = fp.GetNonzeroElements() score1 = 0. nf = 0 for bitId,v in iteritems(fps): nf += v sfp = bitId score1 += _fscores.get(sfp,-4)*v score1 /= nf # features score nAtoms = m.GetNumAtoms() nChiralCenters = len(Chem.FindMolChiralCenters(m,includeUnassigned=True)) ri = m.GetRingInfo() nBridgeheads,nSpiro=numBridgeheadsAndSpiro(m,ri) nMacrocycles=0 for x in ri.AtomRings(): if len(x)>8: nMacrocycles+=1 sizePenalty = nAtoms**1.005 - nAtoms stereoPenalty = math.log10(nChiralCenters+1) spiroPenalty = math.log10(nSpiro+1) bridgePenalty = math.log10(nBridgeheads+1) macrocyclePenalty = 0. # --------------------------------------- # This differs from the paper, which defines: # macrocyclePenalty = math.log10(nMacrocycles+1) # This form generates better results when 2 or more macrocycles are present if nMacrocycles > 0: macrocyclePenalty = math.log10(2) score2 = 0. -sizePenalty -stereoPenalty -spiroPenalty -bridgePenalty -macrocyclePenalty # correction for the fingerprint density # not in the original publication, added in version 1.1 # to make highly symmetrical molecules easier to synthetise score3 = 0. if nAtoms > len(fps): score3 = math.log(float(nAtoms) / len(fps)) * .5 sascore = score1 + score2 + score3 # need to transform "raw" value into scale between 1 and 10 min = -4.0 max = 2.5 sascore = 11. - (sascore - min + 1) / (max - min) * 9. # smooth the 10-end if sascore > 8.: sascore = 8. + math.log(sascore+1.-9.) if sascore > 10.: sascore = 10.0 elif sascore < 1.: sascore = 1.0 return sascore
Example 54
Source File: GO_Elite.py From altanalyze with Apache License 2.0 | 4 votes |
def calculate_score_for_children(tree, zscore_changed_path_db): temp_list = [] child_highest_score = {} for entry in tree: ###The tree is a key with one or more nodes representing a branch, chewed back, with or without children for item in tree[entry]: #get the children of the tree if item in zscore_changed_path_db: if filter_method == 'z-score': new_item = zscore_changed_path_db[item].ZScore(), item temp_list.append(new_item) elif filter_method == 'gene number': new_item = zscore_changed_path_db[item].NumChanged(), item temp_list.append(new_item) elif filter_method == 'combination': z_score_val = zscore_changed_path_db[item].ZScore() gene_num = math.log(zscore_changed_path_db[item].NumChanged(),2) new_item = gene_num*z_score_val, item temp_list.append(new_item) #print new_item,z_score_val else: print 'error, no filter method selected!!' break """elif item == 'siblings_type1': #this will only occur if an parent had multiple children, none of them with nested children if filter_method == 'z-score': parent_item = entry[-1] new_item = zscore_changed_path_db[parent_item][0], parent_item temp_list.append(new_item) elif filter_method == 'gene number': new_item = zscore_changed_path_db[parent_item][1], parent_item temp_list.append(new_item) elif filter_method == 'combination': z_score_val = zscore_changed_path_db[parent_item][0] gene_num = math.log(zscore_changed_path_db[parent_item][1],2) new_item = gene_num*z_score_val, parent_item temp_list.append(new_item)""" #print new_item,z_score_val if len(temp_list)> 0: #if there is at least one nested go_path max_child_score = max(temp_list)[0] max_child_path = max(temp_list)[1] child_highest_score[entry]=max_child_path temp_list = [] """for entry in child_highest_score: print entry,':',child_highest_score[entry]""" return child_highest_score
Example 55
Source File: calculations.py From cvsslib with GNU Lesser General Public License v3.0 | 4 votes |
def calculate_temporal_score(base_score, exploit: Exploitability, remediation: RemediationLevel, confidence: ReportConfidence): return round(base_score * exploit * remediation * confidence, 1) # AdjustedImpact = min(10,10.41*(1-(1-ConfImpact*ConfReq)*(1-IntegImpact*IntegReq)*(1-AvailImpact*AvailReq)))
Example 56
Source File: sascorer.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 4 votes |
def calculateScore(m): if _fscores is None: readFragmentScores() # fragment score fp = rdMolDescriptors.GetMorganFingerprint(m, 2) #<- 2 is the *radius* of the circular fingerprint fps = fp.GetNonzeroElements() score1 = 0. nf = 0 for bitId, v in iteritems(fps): nf += v sfp = bitId score1 += _fscores.get(sfp, -4) * v score1 /= nf # features score nAtoms = m.GetNumAtoms() nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True)) ri = m.GetRingInfo() nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri) nMacrocycles = 0 for x in ri.AtomRings(): if len(x) > 8: nMacrocycles += 1 sizePenalty = nAtoms**1.005 - nAtoms stereoPenalty = math.log10(nChiralCenters + 1) spiroPenalty = math.log10(nSpiro + 1) bridgePenalty = math.log10(nBridgeheads + 1) macrocyclePenalty = 0. # --------------------------------------- # This differs from the paper, which defines: # macrocyclePenalty = math.log10(nMacrocycles+1) # This form generates better results when 2 or more macrocycles are present if nMacrocycles > 0: macrocyclePenalty = math.log10(2) score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty # correction for the fingerprint density # not in the original publication, added in version 1.1 # to make highly symmetrical molecules easier to synthetise score3 = 0. if nAtoms > len(fps): score3 = math.log(float(nAtoms) / len(fps)) * .5 sascore = score1 + score2 + score3 # need to transform "raw" value into scale between 1 and 10 min = -4.0 max = 2.5 sascore = 11. - (sascore - min + 1) / (max - min) * 9. # smooth the 10-end if sascore > 8.: sascore = 8. + math.log(sascore + 1. - 9.) if sascore > 10.: sascore = 10.0 elif sascore < 1.: sascore = 1.0 return sascore