Python create target
60 Python code examples are found related to "
create target".
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: named_tag_scope.py From dashboard-api-python with MIT License | 6 votes |
def createNetworkSmTargetGroup(self, networkId: str, **kwargs): """ **Add a target group** https://developer.cisco.com/meraki/api/#!create-network-sm-target-group - networkId (string) - name (string): The name of this target group - scope (string): The scope and tag options of the target group. Comma separated values beginning with one of withAny, withAll, withoutAny, withoutAll, all, none, followed by tags. Default to none if empty. """ kwargs.update(locals()) metadata = { 'tags': ['Named tag scope'], 'operation': 'createNetworkSmTargetGroup', } resource = f'/networks/{networkId}/sm/targetGroups' body_params = ['name', 'scope'] payload = {k: v for (k, v) in kwargs.items() if k in body_params} return self._session.post(metadata, resource, payload)
Example 2
Source File: pipelinewise.py From pipelinewise with Apache License 2.0 | 6 votes |
def create_consumable_target_config(self, target_config, tap_inheritable_config): """ Create consumable target config by appending "inheritable" config to the common target config """ dict_a, dict_b = {}, {} try: dict_a = utils.load_json(target_config) dict_b = utils.load_json(tap_inheritable_config) # Copy everything from dictB into dictA - Not a real merge dict_a.update(dict_b) # Save the new dict as JSON into a temp file tempfile_path = utils.create_temp_file(dir=self.get_temp_dir(), prefix='target_config_', suffix='.json')[1] utils.save_json(dict_a, tempfile_path) return tempfile_path except Exception as exc: raise Exception(f'Cannot merge JSON files {dict_a} {dict_b} - {exc}') # pylint: disable=too-many-statements,too-many-branches,too-many-nested-blocks,too-many-locals,too-many-arguments
Example 3
Source File: __init__.py From designate with Apache License 2.0 | 6 votes |
def create_pool_target(self, context, pool_id, pool_target): pool_target.pool_id = pool_id pool_target = self._create( tables.pool_targets, pool_target, exceptions.DuplicatePoolTarget, ['options', 'masters']) if pool_target.obj_attr_is_set('options'): for pool_target_option in pool_target.options: self.create_pool_target_option( context, pool_target.id, pool_target_option) else: pool_target.options = objects.PoolTargetOptionList() if pool_target.obj_attr_is_set('masters'): for pool_target_master in pool_target.masters: self.create_pool_target_master( context, pool_target.id, pool_target_master) else: pool_target.masters = objects.PoolTargetMasterList() pool_target.obj_reset_changes(['options', 'masters']) return pool_target
Example 4
Source File: deploy_repository.py From incubator-dlab with Apache License 2.0 | 6 votes |
def create_mount_target(efs_sg_id): try: mount_target_id = efs_client.create_mount_target( FileSystemId=args.efs_id, SubnetId=args.subnet_id, SecurityGroups=[ efs_sg_id ] ).get('MountTargetId') while efs_client.describe_mount_targets( MountTargetId=mount_target_id).get('MountTargets')[0].get('LifeCycleState') != 'available': time.sleep(10) except Exception as err: traceback.print_exc(file=sys.stdout) print('Error with creating AWS mount target: {}'.format(str(err))) raise Exception
Example 5
Source File: actor_network_bn_canonical.py From programmable-agents_tensorflow with MIT License | 6 votes |
def create_target_network(self,state_dim,action_dim,net): state_input = tf.placeholder("float",[None,state_dim]) is_training = tf.placeholder(tf.bool) ema = tf.train.ExponentialMovingAverage(decay=1-TAU) target_update = ema.apply(net) target_net = [ema.average(x) for x in net] layer0_bn = self.batch_norm_layer(state_input,training_phase=is_training,scope_bn='target_batch_norm_0',activation=tf.identity) layer1 = tf.matmul(layer0_bn,target_net[0]) + target_net[1] layer1_bn = self.batch_norm_layer(layer1,training_phase=is_training,scope_bn='target_batch_norm_1',activation=tf.nn.relu) layer2 = tf.matmul(layer1_bn,target_net[2]) + target_net[3] layer2_bn = self.batch_norm_layer(layer2,training_phase=is_training,scope_bn='target_batch_norm_2',activation=tf.nn.relu) action_output = tf.tanh(tf.matmul(layer2_bn,target_net[4]) + target_net[5]) return state_input,action_output,target_update,is_training
Example 6
Source File: registration_repository.py From schematizer with Apache License 2.0 | 6 votes |
def create_data_target(name, target_type, destination): """Create a new data target of specified target type and destination. Args: name (string): name to uniquely identify a data target target_type (string): string describing the type of the data target destination (string): the actual location of the data target, such as the url of the cluster. Returns: :class:models.data_target.DataTarget: the created data target. Raises: ValueError: if given target type or destination is empty. """ verify_truthy_value(name, "data target name") verify_truthy_value(target_type, "data target type") verify_truthy_value(destination, "destination of data target") return models.DataTarget.create( session, name=name, target_type=target_type, destination=destination )
Example 7
Source File: domainservice.py From jdcloud-cli with Apache License 2.0 | 6 votes |
def create_monitor_target(self): client_factory = ClientFactory('domainservice') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.domainservice.apis.CreateMonitorTargetRequest import CreateMonitorTargetRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = CreateMonitorTargetRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e)
Example 8
Source File: zfs.py From jdcloud-cli with Apache License 2.0 | 6 votes |
def create_mount_target(self): client_factory = ClientFactory('zfs') client = client_factory.get(self.app) if client is None: return try: from jdcloud_sdk.services.zfs.apis.CreateMountTargetRequest import CreateMountTargetRequest params_dict = collect_user_args(self.app) headers = collect_user_headers(self.app) req = CreateMountTargetRequest(params_dict, headers) resp = client.send(req) Printer.print_result(resp) except ImportError: print('{"error":"This api is not supported, please use the newer version"}') except Exception as e: print(e)
Example 9
Source File: modeling_decoding.py From unilm with MIT License | 6 votes |
def create_target_mask(self, target_ids, num_target_tokens): max_target_len = target_ids.size(1) target_mask = self.create_mask(target_ids, num_target_tokens) target_pos_matrix = torch.arange( 0, max_target_len, dtype=target_ids.dtype, device=target_ids.device).view(1, -1) triangle_attention_mask = \ target_pos_matrix.view(1, max_target_len, 1) >= target_pos_matrix.view(1, 1, max_target_len) triangle_attention_mask = triangle_attention_mask.type_as(target_mask) diagonal_attention_mask = \ target_pos_matrix.view(1, max_target_len, 1) == target_pos_matrix.view(1, 1, max_target_len) diagonal_attention_mask = diagonal_attention_mask.type_as(target_mask) golden_attention_mask = torch.cat((triangle_attention_mask, torch.zeros_like(triangle_attention_mask)), dim=-1) pseudo_attention_mask = torch.cat( (triangle_attention_mask - diagonal_attention_mask, diagonal_attention_mask), dim=-1) return target_mask, torch.cat((golden_attention_mask, pseudo_attention_mask), dim=1)
Example 10
Source File: util.py From deep-learning-from-scratch-2 with MIT License | 6 votes |
def create_contexts_target(corpus, window_size=1): '''コンテキストとターゲットの作成 :param corpus: コーパス(単語IDのリスト) :param window_size: ウィンドウサイズ(ウィンドウサイズが1のときは、単語の左右1単語がコンテキスト) :return: ''' target = corpus[window_size:-window_size] contexts = [] for idx in range(window_size, len(corpus)-window_size): cs = [] for t in range(-window_size, window_size + 1): if t == 0: continue cs.append(corpus[idx + t]) contexts.append(cs) return np.array(contexts), np.array(target)
Example 11
Source File: __init__.py From luscan-devel with GNU General Public License v2.0 | 6 votes |
def create_target(self, name, hosts, comment=""): """ Creates a target in OpenVAS. :param name: name to the target :type name: str :param hosts: target list. Can be only one target or a list of targets :type hosts: str | list(str) :param comment: comment to add to task :type comment: str :return: the ID of the created target. :rtype: str :raises: ClientError, ServerError """ raise NotImplementedError() #----------------------------------------------------------------------
Example 12
Source File: parseundp.py From Semantic-Search-for-Sustainable-Development with Apache License 2.0 | 6 votes |
def create_target_dictionary(development_matches): sgd_target_pattern = r'[0-9]+\.[0-9]+' # pattern to match target format target_matches = {} for development_match in development_matches: development_match.replace(np.nan, '', regex=True, inplace = True) target = None for row in development_match.itertuples(): match = re.search(sgd_target_pattern, str(row[1]), flags=0) if match: # If we found a undp target target = match.group() if target in target_matches: # Add sentence to the set for that target's key target_matches[target].add(row[1][len(target):]) else: target_matches[target] = set({row[1][len(target):]}) # Continue adding to the current target's key if there is text in the data frame if target != None and row[2] != '': target_matches[target].add(row[2]) return target_matches
Example 13
Source File: client.py From pyvas with MIT License | 6 votes |
def create_target(self, name, hosts, port_list=None, ssh_credential=None, alive_tests=None, comment=None): """Creates a target of hosts.""" if comment is None: comment = "" data = {"name": name, "hosts": hosts, "comment": comment} if port_list: data.update({"port_list": {'@id': port_list}}) if alive_tests: data.update({"alive_tests": alive_tests}) if ssh_credential: data.update({"ssh_credential": {'@id': ssh_credential}}) request = dict_to_lxml( "create_target", data ) return self._create(request)
Example 14
Source File: manifest.py From edx-analytics-pipeline with GNU Affero General Public License v3.0 | 6 votes |
def create_manifest_target(manifest_id, targets): # If we are running locally, we need our manifest file to be a local file target, however, if we are running on # a real Hadoop cluster, it has to be an HDFS file so that the input format can read it. Luigi makes it a little # difficult for us to construct a target that can be one or the other of those types of targets at runtime since # it relies on inheritance to signify the difference. We hack the inheritance here, by dynamically choosing the # base class at runtime based on the URL of the manifest file. # Construct the manifest file URL from the manifest_id and the configuration manifest_file_path = get_manifest_file_path(manifest_id) # Figure out the type of target that should be used to write/read the file. manifest_file_target_class, init_args, init_kwargs = get_target_class_from_url(manifest_file_path) # Ensure our constructed target inherits from the appropriate type of file target. class ManifestInputTarget(ManifestInputTargetMixin, manifest_file_target_class): pass # This functionality is inherited from the Mixin which contains all of the substantial logic return ManifestInputTarget.from_existing_targets(targets, *init_args, **init_kwargs)
Example 15
Source File: target.py From darkc0de-old-stuff with GNU General Public License v3.0 | 6 votes |
def createTargetDirs(): """ Create the output directory. """ conf.outputPath = "%s%s%s" % (paths.SQLMAP_OUTPUT_PATH, os.sep, conf.hostname) if not os.path.isdir(paths.SQLMAP_OUTPUT_PATH): os.makedirs(paths.SQLMAP_OUTPUT_PATH, 0755) if not os.path.isdir(conf.outputPath): os.makedirs(conf.outputPath, 0755) dumper.setOutputFile() __createDumpDir() __createFilesDir()
Example 16
Source File: changan.py From Arsenal with GNU General Public License v3.0 | 6 votes |
def handle_create_target(self, event_data): """ nothing right now """ try: interfaces = [] for interface in event_data.get('target', {})['facts']['interfaces']: my_interface = {} my_interface['name'] = interface['name'] my_interface['mac'] = interface['mac_addr'] my_interface['ips'] = [] for ip_addr in interface['ip_addrs']: my_interface['ips'].append(ip_addr.split('/')[0]) interfaces.append(my_interface) add_client_data = {'device_name': event_data['name'], 'interface': my_interface} requests.put('{}api/v1/devices'.format(self.url), json=add_client_data, verify=False) except Exception as exception: #pylint: disable=broad-except print(exception)
Example 17
Source File: target.py From Arsenal with GNU General Public License v3.0 | 6 votes |
def create_target(params): """ ### Overview This API function creates a new target object in the database. ### Parameters name (unique): The name given to the target. <str> uuid (unique): The unique identifier of the target. <str> facts (optional): A dictionary of key,value pairs to store for the target. <dict> """ name = params["name"] uuid = params["uuid"] facts = params.get("facts", {}) target = Target(name=name, uuid=uuid, facts=facts) target.save(force_insert=True) # Generate Event if not current_app.config.get("DISABLE_EVENTS", False): events.trigger_event.delay(event="target_create", target=target.document(True, True, True)) return success_response()
Example 18
Source File: actor_network.py From MADRaS with GNU Affero General Public License v3.0 | 6 votes |
def create_target_network(self,state_dim,action_dim,net): state_input = tf.placeholder("float",[None,state_dim]) ema = tf.train.ExponentialMovingAverage(decay=1-TAU) target_update = ema.apply(net) target_net = [ema.average(x) for x in net] layer1 = tf.nn.relu(tf.matmul(state_input,target_net[0]) + target_net[1]) layer2 = tf.nn.relu(tf.matmul(layer1,target_net[2]) + target_net[3]) steer = tf.tanh(tf.matmul(layer2,target_net[4]) + target_net[5]) accel = tf.sigmoid(tf.matmul(layer2,target_net[6]) + target_net[7]) brake = tf.sigmoid(tf.matmul(layer2,target_net[8]) + target_net[9]) # action_output = tf.concat(1, [steer, accel, brake]) action_output = tf.concat([steer, accel, brake], 1) return state_input,action_output,target_update,target_net
Example 19
Source File: schematizer.py From data_pipeline with Apache License 2.0 | 6 votes |
def create_data_target(self, name, target_type, destination): """ Create and return newly created data target. Args: name (str): Name to uniquely identify the data target. target_type (str): The type of the data target, such as Redshift. destination (str): The actual location of the data target, such as Url of the Redshift cluster. Returns: (data_pipeline.schematizer_clientlib.models.data_target.DataTarget): The newly created data target. """ response = self._call_api( api=self._client.data_targets.create_data_target, request_body={ 'name': name, 'target_type': target_type, 'destination': destination } ) _data_target = _DataTarget.from_response(response) self._set_cache_by_data_target(_data_target) return _data_target.to_result()
Example 20
Source File: ezibpy.py From ezibpy with Apache License 2.0 | 6 votes |
def createTargetOrder(self, quantity, parentId=0, target=0., orderType=None, transmit=True, group=None, tif="DAY", rth=False, account=None): """ Creates TARGET order """ params = { "quantity": quantity, "price": target, "transmit": transmit, "orderType": orderType, "ocaGroup": group, "parentId": parentId, "rth": rth, "tif": tif, "account": self._get_active_account(account) } # default order type is "Market if Touched" if orderType is None: # or orderType.upper() == "MKT": params['orderType'] = dataTypes["ORDER_TYPE_MIT"] params['auxPrice'] = target del params['price'] order = self.createOrder(**params) return order # -----------------------------------------
Example 21
Source File: deploy.py From dynamodb-continuous-backup with Apache License 2.0 | 6 votes |
def create_lambda_cwe_target(lambda_arn): existing_targets = cwe_client.list_targets_by_rule( Rule=DDB_CREATE_DELETE_RULE_NAME ) if 'Targets' not in existing_targets or len(existing_targets['Targets']) == 0: cwe_client.put_targets( Rule=DDB_CREATE_DELETE_RULE_NAME, Targets=[ { 'Id': shortuuid.uuid(), 'Arn': lambda_arn } ] ) print "Created CloudWatchEvents Target for Rule %s" % (DDB_CREATE_DELETE_RULE_NAME) else: print "Existing CloudWatchEvents Rule has correct Target Function"
Example 22
Source File: descriptor.py From workload-automation with Apache License 2.0 | 6 votes |
def create_target_description(name, *args, **kwargs): name = identifier(name) for td in _adhoc_target_descriptions: if caseless_string(name) == td.name: msg = 'Target with name "{}" already exists (from source: {})' raise ValueError(msg.format(name, td.source)) stack = inspect.stack() # inspect.stack() returns a list of call frame records for the current thread # in reverse call order. So the first entry is for the current frame and next one # for the immediate caller. Each entry is a tuple in the format # (frame_object, module_path, line_no, function_name, source_lines, source_lines_index) # # Here we assign the path of the calling module as the "source" for this description. # because this might be invoked via the add_scription_for_target wrapper, we need to # check for that, and make sure that we get the info for *its* caller in that case. if stack[1][3] == 'add_description_for_target': source = stack[2][1] else: source = stack[1][1] _adhoc_target_descriptions.append(TargetDescription(name, source, *args, **kwargs))
Example 23
Source File: dataio.py From open-sesame with Apache License 2.0 | 5 votes |
def create_target_frame_map(luIndex_file, tf_map): sys.stderr.write("\nReading the frame - lexunit map from " + LU_INDEX + " ...\n") f = open(luIndex_file, "rb") tree = et.parse(f) root = tree.getroot() multiplicity = 0 repeated = 0 tot = 0 for lu in root.iter('{http://framenet.icsi.berkeley.edu}lu'): lu_name = lu.attrib["name"] frame = lu.attrib["frameName"] if lu_name not in tf_map: tf_map[lu_name] = [] else: repeated += 1 tf_map[lu_name].append(frame) if len(tf_map[lu_name]) > multiplicity: multiplicity = len(tf_map[lu_name]) tot += 1 f.close() sys.stderr.write("# unique LUs = " + str(len(tf_map)) + "\n") sys.stderr.write("# total LUs = " + str(tot) + "\n") sys.stderr.write("# targets with multiple frames = " + str(repeated) + "\n") sys.stderr.write("# max frames per target = " + str(multiplicity) + "\n\n") return tf_map
Example 24
Source File: dataio.py From open-sesame with Apache License 2.0 | 5 votes |
def create_target_lu_map(): sys.stderr.write("\nReading the lexical unit index file: {}\n".format(LU_INDEX)) lu_index_file = open(LU_INDEX, "rb") tree = et.parse(lu_index_file) root = tree.getroot() multiplicity = 0 repeated = 0 total = 0 target_lu_map = {} lu_names = set([]) for lu in root.iter('{http://framenet.icsi.berkeley.edu}lu'): lu_name = lu.attrib["name"] lu_names.add(lu_name) target_name = lu_name.split('.')[0] LUDICT.addstr(target_name) if target_name not in target_lu_map: target_lu_map[target_name] = set([]) else: repeated += 1 target_lu_map[target_name].add(lu_name) if len(target_lu_map[target_name]) > multiplicity: multiplicity = len(target_lu_map[target_name]) total += 1 lu_index_file.close() sys.stderr.write("# unique targets = {}\n".format(len(target_lu_map))) sys.stderr.write("# total targets = {}\n".format(total)) sys.stderr.write("# targets with multiple LUs = {}\n".format(repeated)) sys.stderr.write("# max LUs per target = {}\n\n".format(multiplicity)) return target_lu_map, lu_names
Example 25
Source File: helpers.py From harmony-ops with MIT License | 5 votes |
def create_name_target_group(shard, id_domain): ret = [] tg_prefix = 'tg-s' + str(shard) + '-api-' + id_domain + '-' ret.append(tg_prefix + 'https') ret.append(tg_prefix + 'wss') return ret
Example 26
Source File: logperiodic_opt.py From python-necpp with GNU General Public License v2.0 | 5 votes |
def create_optimization_target(): def target(args): l_1, x_1, tau = args if l_1 <= 0 or x_1 <= 0 or tau <= 0: return float('inf') try: result = 0 vswr_score = 0 gains_score = 0 for range_low, range_high in [ (2400, 2500), (5725, 5875) ]: freqs, gains, vswrs = get_gain_swr_range(l_1, x_1, tau, start=range_low, stop=range_high) for gain in gains: gains_score += gain for vswr in vswrs: if vswr >= 1.8: vswr = np.exp(vswr) # a penalty :) vswr_score += vswr # VSWR should minimal in both bands, gains maximal: result = vswr_score - gains_score except: print("Caught exception") return float('inf') print(result) return result return target
Example 27
Source File: invert.py From ssai-cnn with MIT License | 5 votes |
def create_target(self): xp = cuda.cupy if self.args.gpu >= 0 else np self.x0_data = xp.asarray(self.img[np.newaxis].copy()) x0 = chainer.Variable(self.x0_data, volatile=True) # Extract feature from target image self.y0 = self.extract_feature(x0) self.y0.volatile = False y0_sigma = np.linalg.norm(cuda.to_cpu(self.y0.data)) self.lambda_euc = self.args.x0_sigma ** 2 / y0_sigma ** 2
Example 28
Source File: action.py From insightconnect-plugins with MIT License | 5 votes |
def create_target_cell_range(self, direction, start_cell, update_list): start_cell_cord = gspread.utils.a1_to_rowcol(start_cell) list_size = len(update_list) - 1 self.logger.info("Direction: " + direction) if direction == "column": end_cell_cord = (start_cell_cord[0] + list_size, start_cell_cord[1]) else: end_cell_cord = (start_cell_cord[0], start_cell_cord[1] + list_size) end_cell = gspread.utils.rowcol_to_a1(end_cell_cord[0], end_cell_cord[1]) cell_range = start_cell + ":" + end_cell self.logger.info("Target range: " + str(cell_range)) return cell_range
Example 29
Source File: decoder.py From lingvo with Apache License 2.0 | 5 votes |
def CreateTargetInfoMisc(self, targets): """Return a NestedMap corresponding to the 'misc' field in TargetInfo.""" if 'fst_bias_probs' in targets: return py_utils.NestedMap({ 'fst_bias_probs': targets.fst_bias_probs, }) else: return py_utils.NestedMap()
Example 30
Source File: custom.py From azure-cli-extensions with MIT License | 5 votes |
def create_hpc_cache_blob_storage_target(cmd, client, resource_group_name, cache_name, name, virtual_namespace_path, clfs_target): body = {} body['junctions'] = [{'namespacePath': virtual_namespace_path, 'targetPath': '/'}] body['target_type'] = 'clfs' # str body.setdefault('clfs', {})['target'] = clfs_target # str return client.create_or_update(resource_group_name=resource_group_name, cache_name=cache_name, storage_target_name=name, storagetarget=body)
Example 31
Source File: custom.py From azure-cli-extensions with MIT License | 5 votes |
def create_hpc_cache_nfs_storage_target(cmd, client, resource_group_name, cache_name, name, junctions, nfs3_target, nfs3_usage_model): body = {} body['junctions'] = junctions body['target_type'] = 'nfs3' # str body.setdefault('nfs3', {})['target'] = nfs3_target # str body.setdefault('nfs3', {})['usage_model'] = nfs3_usage_model # str return client.create_or_update(resource_group_name=resource_group_name, cache_name=cache_name, storage_target_name=name, storagetarget=body)
Example 32
Source File: rpn_helpers.py From cntk-python-web-service-on-azure with MIT License | 5 votes |
def create_proposal_target_layer(rpn_rois, scaled_gt_boxes, num_classes): ''' Creates a proposal target layer that is used for training an object detection network as proposed in the "Faster R-CNN" paper: Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" Assigns object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. It also adds gt_boxes to candidates and samples fg and bg rois for training. Args: rpn_rois: The proposed ROIs, e.g. from a region proposal network scaled_gt_boxes: The ground truth boxes as (x1, y1, x2, y2, label). Coordinates are absolute pixels wrt. the input image. num_classes: The number of classes in the data set Returns: rpn_target_rois - a set of rois containing the ground truth and a number of sampled fg and bg ROIs label_targets - the target labels for the rois bbox_targets - the regression coefficient targets for the rois bbox_inside_weights - the weights for the regression loss ''' ptl_param_string = "'num_classes': {}".format(num_classes) ptl = user_function(ProposalTargetLayer(rpn_rois, scaled_gt_boxes, param_str=ptl_param_string)) # use an alias if you need to access the outputs, e.g., when cloning a trained network rois = alias(ptl.outputs[0], name='rpn_target_rois') label_targets = ptl.outputs[1] bbox_targets = ptl.outputs[2] bbox_inside_weights = ptl.outputs[3] return rois, label_targets, bbox_targets, bbox_inside_weights
Example 33
Source File: __init__.py From designate with Apache License 2.0 | 5 votes |
def create_pool_target_option(self, context, pool_target_id, pool_target_option): pool_target_option.pool_target_id = pool_target_id return self._create(tables.pool_target_options, pool_target_option, exceptions.DuplicatePoolTargetOption)
Example 34
Source File: __init__.py From designate with Apache License 2.0 | 5 votes |
def create_pool_target_master(self, context, pool_target_id, pool_target_master): pool_target_master.pool_target_id = pool_target_id return self._create(tables.pool_target_masters, pool_target_master, exceptions.DuplicatePoolTargetMaster)
Example 35
Source File: generator.py From fake-bpy-module with MIT License | 5 votes |
def get_or_create_target(self, target: str): info = self.get_target(target) if info is None: info = self.create_target(target) return info
Example 36
Source File: efs_instance.py From Particle-Cloud-Framework with Apache License 2.0 | 5 votes |
def create_mount_target(self, subnet_id, **kwargs): """ Creates a mount target for a file system Args: subnet_id (string): ID of the subnet to add the mount target in **kwargs: options for boto3 create_mount target Returns: response of boto3 create_mount_target """ return self.client.create_mount_target(FileSystemId=self.current_state_definition['FileSystemId'], SubnetId=subnet_id, **kwargs)
Example 37
Source File: 1389-按既定顺序创建目标数组.py From LeetCode-Python with GNU General Public License v3.0 | 5 votes |
def createTargetArray(self, nums, index): """ :type nums: List[int] :type index: List[int] :rtype: List[int] """ res = [] for i in range(len(nums)): res.insert(index[i], nums[i]) return res
Example 38
Source File: crate-exporter.py From ngsi-timeseries-api with MIT License | 5 votes |
def create_target_table(self): table_fqn = self._table.identifier().fqn() cs = [f"{n} {t}" for (n, t) in self._column_specs()] cols = ', '.join(cs) return f"CREATE TABLE IF NOT EXISTS {table_fqn} ({cols});"
Example 39
Source File: utils.py From face-alignment with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_target_heatmap(target_landmarks, centers, scales): heatmaps = np.zeros((target_landmarks.shape[0], 68, 64, 64), dtype=np.float32) for i in range(heatmaps.shape[0]): for p in range(68): landmark_cropped_coor = transform(target_landmarks[i, p] + 1, centers[i], scales[i], 64, invert=False) heatmaps[i, p] = draw_gaussian(heatmaps[i, p], landmark_cropped_coor + 1, 1) return torch.tensor(heatmaps)
Example 40
Source File: update-task-target.gmp.py From gvm-tools with GNU General Public License v3.0 | 5 votes |
def create_target_hosts(gmp, host_file, task_id, old_target_id): new_target_id = copy_send_target(gmp, host_file, old_target_id) gmp.modify_task(task_id=task_id, target_id=new_target_id) print(' Task successfully modified!\n')
Example 41
Source File: nvt-scan.gmp.py From gvm-tools with GNU General Public License v3.0 | 5 votes |
def create_target(gmp, name): try: res = gmp.create_target(name, hosts=[name]) target_id = res.xpath('@id')[0] except GvmError: res = gmp.get_targets(filter='name=%s hosts=%s' % (name, name)) target_id = res.xpath('target/@id')[0] return target_id
Example 42
Source File: utils.py From openstreetmap-heatmap with Apache License 2.0 | 5 votes |
def create_target(origin=(0,0,0)): tar = bpy.data.objects.new('Target', None) bpy.context.scene.objects.link(tar) tar.location = origin return tar
Example 43
Source File: convert_stix.py From cti-stix-slider with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_victim_target_for_threat_actor(source, target_ref, target_obj_ref_1x): global _VICTIM_TARGET_TTPS target, identity1x_tuple = choose_full_object_or_idref(target_ref, target_obj_ref_1x) ttp = TTP() ttp.victim_targeting = VictimTargeting() ttp.victim_targeting.identity = target _VICTIM_TARGET_TTPS.append(ttp) source.observed_ttps.append(ttp) identity1x_tuple[1] = True
Example 44
Source File: convert_stix.py From cti-stix-slider with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_exploit_target_to_ttps(ttp, target_ref, target_obj_ref_1x): target, vul1x_tuple = choose_full_object_or_idref(target_ref, target_obj_ref_1x) ttp.add_exploit_target(target) vul1x_tuple[1] = True # most of the TODOs in this map represent relationships not explicitly called out in STIX 1.x
Example 45
Source File: convert_stix.py From cti-stix-slider with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_victim_target_for_attack_pattern(ttp, target_ref, target_obj_ref_1x): global _VICTIM_TARGET_TTPS target, identity1x_tuple = choose_full_object_or_idref(target_ref, target_obj_ref_1x) ttp.victim_targeting = VictimTargeting() ttp.victim_targeting.identity = target _VICTIM_TARGET_TTPS.append(ttp) identity1x_tuple[1] = True
Example 46
Source File: region_loss.py From models with MIT License | 5 votes |
def create_target(pred_corners, gt_points, noobject_scale=0.1, object_scale=5, sil_thresh=0.6): xp = chainer.cuda.get_array_module(pred_corners) B, _, _, H, W = pred_corners.shape B = len(gt_points) conf_mask = noobject_scale * xp.ones((B, H, W), dtype=np.bool) coord_mask = xp.zeros((B, H, W), dtype=np.bool) gt_confs = xp.zeros((B, H, W), dtype=np.float32) gt_rpoints = xp.zeros((B, 9, 2, H, W), dtype=np.float32) for b, (pred_corner, gt_point) in enumerate( zip(pred_corners, gt_points)): conf = xp.zeros((H, W), dtype=np.float32) for gt_pt in gt_point: conf = xp.maximum( conf, corner_confidences9(gt_pt, pred_corner)) conf_mask[b][conf > sil_thresh] = 0 for b, (pred_corner, gt_point) in enumerate( zip(pred_corners, gt_points)): for gt_pt in gt_point: # NOTE: 0 <= gt_pt[0, 1] - gi0 < 1 gi0 = int(xp.floor(gt_pt[0, 1] * W)) gj0 = int(xp.floor(gt_pt[0, 0] * H)) conf = corner_confidences9( gt_pt, pred_corner[:, :, gi0, gj0]) conf_mask[b, gi0, gj0] = object_scale coord_mask[b, gi0, gj0] = 1 gt_confs[b, gi0, gj0] = conf gt_rpoints[b, :, 0, gi0, gj0] = gt_pt[:, 0] * W - gj0 gt_rpoints[b, :, 1, gi0, gj0] = gt_pt[:, 1] * H - gi0 return gt_rpoints, gt_confs, coord_mask, conf_mask
Example 47
Source File: handlers.py From aws-syndicate with Apache License 2.0 | 5 votes |
def create_deploy_target_bucket(): """ Creates a bucket in AWS account where all bundles will be uploaded :return: """ from syndicate.core import CONFIG click.echo('Create deploy target sdk: %s' % CONFIG.deploy_target_bucket) create_bundles_bucket() click.echo('Deploy target bucket was created successfully')
Example 48
Source File: diagrams_common.py From sphinxcontrib-needs with MIT License | 5 votes |
def create_target(self, target_name): env = self.state.document.settings.env id = env.new_serialno(target_name) targetid = "{targetname}-{docname}-{id}".format( targetname=target_name, docname=env.docname, id=id) targetnode = nodes.target('', '', ids=[targetid]) return id, targetid, targetnode
Example 49
Source File: import_data.py From urbanfootprint with GNU General Public License v3.0 | 5 votes |
def create_target_db_string(self): self.target_database_connection = "-h {0} -p {1} --user {2} {3}".format( self.target_database.get('HOST', 'localhost'), self.target_database.get('PORT', 5432), self.target_database['USER'], self.target_database['NAME']) logger.info("Using target database connection: {0}".format(self.target_database_connection))
Example 50
Source File: deploy-malmirror.py From Cloud-Security-Research with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_mirror_target_sg(session, region, target_vpc_id): ec2_client = session.client('ec2', region_name=region) sg_id = ec2_client.create_security_group( GroupName=random_string(), Description=random_string(), VpcId=target_vpc_id )['GroupId'] ec2_client.authorize_security_group_ingress( GroupId=sg_id, IpPermissions=[ { 'FromPort': 4789, 'ToPort': 4789, 'IpProtocol': 'udp', 'IpRanges': [ { 'CidrIp': '10.0.0.0/8' }, { 'CidrIp': '172.16.0.0/12' }, { 'CidrIp': '192.168.0.0/16' } ] } ] ) return sg_id
Example 51
Source File: deploy-malmirror.py From Cloud-Security-Research with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_mirror_target(session, region, target_eni_id): ec2_client = session.client('ec2', region_name=region) return ec2_client.create_traffic_mirror_target( NetworkInterfaceId=target_eni_id )['TrafficMirrorTarget']['TrafficMirrorTargetId']
Example 52
Source File: rpn_helpers.py From raster-deep-learning with Apache License 2.0 | 5 votes |
def create_proposal_target_layer(rpn_rois, scaled_gt_boxes, cfg): ''' Creates a proposal target layer that is used for training an object detection network as proposed in the "Faster R-CNN" paper: Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" Assigns object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. It also adds gt_boxes to candidates and samples fg and bg rois for training. Args: rpn_rois: The proposed ROIs, e.g. from a region proposal network scaled_gt_boxes: The ground truth boxes as (x1, y1, x2, y2, label). Coordinates are absolute pixels wrt. the input image. num_classes: The number of classes in the data set Returns: rpn_target_rois - a set of rois containing the ground truth and a number of sampled fg and bg ROIs label_targets - the target labels for the rois bbox_targets - the regression coefficient targets for the rois bbox_inside_weights - the weights for the regression loss ''' ptl_param_string = "'num_classes': {}".format(cfg["DATA"].NUM_CLASSES) ptl = user_function(ProposalTargetLayer(rpn_rois, scaled_gt_boxes, batch_size=cfg.NUM_ROI_PROPOSALS, fg_fraction=cfg["TRAIN"].FG_FRACTION, normalize_targets=cfg.BBOX_NORMALIZE_TARGETS, normalize_means=cfg.BBOX_NORMALIZE_MEANS, normalize_stds=cfg.BBOX_NORMALIZE_STDS, fg_thresh=cfg["TRAIN"].FG_THRESH, bg_thresh_hi=cfg["TRAIN"].BG_THRESH_HI, bg_thresh_lo=cfg["TRAIN"].BG_THRESH_LO, param_str=ptl_param_string)) # use an alias if you need to access the outputs, e.g., when cloning a trained network rois = alias(ptl.outputs[0], name='rpn_target_rois') label_targets = ptl.outputs[1] bbox_targets = ptl.outputs[2] bbox_inside_weights = ptl.outputs[3] return rois, label_targets, bbox_targets, bbox_inside_weights
Example 53
Source File: cherry_sac.py From cherry with Apache License 2.0 | 5 votes |
def create_target_network(network): target_network = copy.deepcopy(network) for param in target_network.parameters(): param.requires_grad = False return target_network
Example 54
Source File: data_io.py From sockeye with Apache License 2.0 | 5 votes |
def create_target_and_shifted_label_sequences(target_and_label: mx.nd.NDArray) -> Tuple[mx.nd.NDArray, mx.nd.NDArray]: """ Returns the target and label sequence from a joint array of varying-length sequences including both <bos> and <eos>. Both ndarrays returned have input size of second dimension - 1. """ target = target_and_label[:, :-1] # skip last column (for longest-possible sequence, this already removes <eos>) target = mx.nd.where(target == C.EOS_ID, mx.nd.zeros_like(target), target) # replace other <eos>'s with <pad> label = target_and_label[:, 1:] # label skips <bos> return target, label
Example 55
Source File: db_manager.py From recon-pipeline with MIT License | 5 votes |
def get_or_create_target_by_ip_or_hostname(self, ip_or_host): """ Simple helper to query a Target record by either hostname or ip address, whichever works """ # get existing instance instance = ( self.session.query(Target) .filter( or_( Target.ip_addresses.any( or_(IPAddress.ipv4_address.in_([ip_or_host]), IPAddress.ipv6_address.in_([ip_or_host])) ), Target.hostname == ip_or_host, ) ) .first() ) if instance: return instance else: # create new entry tgt = self.get_or_create(Target) if get_ip_address_version(ip_or_host) == "4": tgt.ip_addresses.append(IPAddress(ipv4_address=ip_or_host)) elif get_ip_address_version(ip_or_host) == "6": tgt.ip_addresses.append(IPAddress(ipv6_address=ip_or_host)) else: # we've already determined it's not an IP, only other possibility is a hostname tgt.hostname = ip_or_host return tgt
Example 56
Source File: clb_client.py From tencentcloud-cli with Apache License 2.0 | 5 votes |
def doCreateTargetGroup(argv, arglist): g_param = parse_global_arg(argv) if "help" in argv: show_help("CreateTargetGroup", g_param[OptionsDefine.Version]) return param = { "TargetGroupName": argv.get("--TargetGroupName"), "VpcId": argv.get("--VpcId"), "Port": Utils.try_to_json(argv, "--Port"), "TargetGroupInstances": Utils.try_to_json(argv, "--TargetGroupInstances"), } cred = credential.Credential(g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey]) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.ClbClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.CreateTargetGroupRequest() model.from_json_string(json.dumps(param)) rsp = client.CreateTargetGroup(model) result = rsp.to_json_string() jsonobj = None try: jsonobj = json.loads(result) except TypeError as e: jsonobj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", jsonobj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
Example 57
Source File: net_plotter.py From loss-landscape with MIT License | 5 votes |
def create_target_direction(net, net2, dir_type='states'): """ Setup a target direction from one model to the other Args: net: the source model net2: the target model with the same architecture as net. dir_type: 'weights' or 'states', type of directions. Returns: direction: the target direction from net to net2 with the same dimension as weights or states. """ assert (net2 is not None) # direction between net2 and net if dir_type == 'weights': w = get_weights(net) w2 = get_weights(net2) direction = get_diff_weights(w, w2) elif dir_type == 'states': s = net.state_dict() s2 = net2.state_dict() direction = get_diff_states(s, s2) return direction
Example 58
Source File: repo2gospec.py From gofed with GNU General Public License v2.0 | 5 votes |
def createTargetDirectories(name, target = ""): if target == "": target = "%s/%s" % (os.getcwd(), name) else: target = os.path.abspath("%s/%s" % (target, name) ) make_sure_path_exists(target) os.chdir(target)