Python mean pixel accuracy
7 Python code examples are found related to "
mean pixel accuracy".
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
Example 1
Source File: metric.py From FNA with Apache License 2.0 | 7 votes |
def mean_pixel_accuracy(pixel_correct, pixel_labeled): mean_pixel_accuracy = 1.0 * np.sum(pixel_correct) / ( np.spacing(1) + np.sum(pixel_labeled)) return mean_pixel_accuracy
Example 2
Source File: utils.py From Semantic-Aware-Scene-Recognition with MIT License | 5 votes |
def MeanPixelAccuracy(pred, label): """ Function to compute the mean pixel accuracy for semantic segmentation between mini-batch tensors :param pred: Tensor of predictions :param label: Tensor of ground-truth :return: Mean pixel accuracy for all the mini-bath """ # Convert tensors to numpy arrays imPred = np.asarray(torch.squeeze(pred)) imLab = np.asarray(torch.squeeze(label)) # Create empty numpy arrays pixel_accuracy = np.empty(imLab.shape[0]) pixel_correct = np.empty(imLab.shape[0]) pixel_labeled = np.empty(imLab.shape[0]) # Compute pixel accuracy for each pair of images in the batch for i in range(imLab.shape[0]): pixel_accuracy[i], pixel_correct[i], pixel_labeled[i] = pixelAccuracy(imPred[i], imLab[i]) # Compute the final accuracy for the batch acc = 100.0 * np.sum(pixel_correct) / (np.spacing(1) + np.sum(pixel_labeled)) return acc
Example 3
Source File: eval.py From Deeplab-v3plus with MIT License | 5 votes |
def Mean_Pixel_Accuracy(self): MPA = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1) MPA = np.nanmean(MPA) return MPA
Example 4
Source File: eval.py From MaxSquareLoss with MIT License | 5 votes |
def Mean_Pixel_Accuracy(self, out_16_13=False): MPA = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1) if self.synthia: MPA_16 = np.nanmean(MPA[:self.ignore_index]) MPA_13 = np.nanmean(MPA[synthia_set_16_to_13]) return MPA_16, MPA_13 if out_16_13: MPA_16 = np.nanmean(MPA[synthia_set_16]) MPA_13 = np.nanmean(MPA[synthia_set_13]) return MPA_16, MPA_13 MPA = np.nanmean(MPA[:self.ignore_index]) return MPA