Python datasets.ds_utils.xyxy_to_xywh() Examples
The following are 6
code examples of datasets.ds_utils.xyxy_to_xywh().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets.ds_utils
, or try the search function
.
Example #1
Source File: coco.py From face-py-faster-rcnn with MIT License | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb
Example #2
Source File: coco.py From faster-rcnn-resnet with MIT License | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb
Example #3
Source File: coco.py From Faster-RCNN_TF with MIT License | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb
Example #4
Source File: coco.py From uai-sdk with Apache License 2.0 | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb
Example #5
Source File: coco.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb
Example #6
Source File: coco.py From py-R-FCN with MIT License | 6 votes |
def _filter_crowd_proposals(roidb, crowd_thresh): """ Finds proposals that are inside crowd regions and marks them with overlap = -1 (for all gt rois), which means they will be excluded from training. """ for ix, entry in enumerate(roidb): overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(overlaps.max(axis=1) == -1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue iscrowd = [int(True) for _ in xrange(len(crowd_inds))] crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] overlaps[non_gt_inds[bad_inds], :] = -1 roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps) return roidb