Python nets.resnet_utils.resnet_arg_scope() Examples
The following are 30
code examples of nets.resnet_utils.resnet_arg_scope().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.resnet_utils
, or try the search function
.
Example #1
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testClassificationEndPointsWithNoBatchNormArgscope(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, is_training=None, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('global_pool' in end_points) self.assertListEqual(end_points['global_pool'].get_shape().as_list(), [2, 1, 1, 32])
Example #2
Source File: resnet_v1_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #3
Source File: resnet_v1_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #4
Source File: resnet_v2_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes))
Example #5
Source File: resnet_v2_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32))
Example #6
Source File: resnet_v1_test.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 6 votes |
def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #7
Source File: resnet_v2_test.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 6 votes |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32))
Example #8
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('global_pool' in end_points) self.assertListEqual(end_points['global_pool'].get_shape().as_list(), [2, 1, 1, 32])
Example #9
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testEndpointNames(self): # Like ResnetUtilsTest.testEndPointsV2(), but for the public API. global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') expected = ['resnet/conv1'] for block in range(1, 5): for unit in range(1, 4 if block < 4 else 3): for conv in range(1, 4): expected.append('resnet/block%d/unit_%d/bottleneck_v2/conv%d' % (block, unit, conv)) expected.append('resnet/block%d/unit_%d/bottleneck_v2' % (block, unit)) expected.append('resnet/block%d/unit_1/bottleneck_v2/shortcut' % block) expected.append('resnet/block%d' % block) expected.extend(['global_pool', 'resnet/logits', 'resnet/spatial_squeeze', 'predictions']) self.assertItemsEqual(end_points.keys(), expected)
Example #10
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, include_root_block=False, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #11
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #12
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes))
Example #13
Source File: resnet_v1_test.py From ctw-baseline with MIT License | 6 votes |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32))
Example #14
Source File: resnet_v1_test.py From ctw-baseline with MIT License | 6 votes |
def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes))
Example #15
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('global_pool' in end_points) self.assertListEqual(end_points['global_pool'].get_shape().as_list(), [2, 1, 1, 32])
Example #16
Source File: resnet_v2_test.py From DeepLab_v3 with MIT License | 6 votes |
def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #17
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testEndpointNames(self): # Like ResnetUtilsTest.testEndPointsV1(), but for the public API. global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') expected = ['resnet/conv1'] for block in range(1, 5): for unit in range(1, 4 if block < 4 else 3): for conv in range(1, 4): expected.append('resnet/block%d/unit_%d/bottleneck_v1/conv%d' % (block, unit, conv)) expected.append('resnet/block%d/unit_%d/bottleneck_v1' % (block, unit)) expected.append('resnet/block%d/unit_1/bottleneck_v1/shortcut' % block) expected.append('resnet/block%d' % block) expected.extend(['global_pool', 'resnet/logits', 'resnet/spatial_squeeze', 'predictions']) self.assertItemsEqual(end_points.keys(), expected)
Example #18
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #19
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, include_root_block=False, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #20
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #21
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes))
Example #22
Source File: resnet_v1_test.py From DeepLab_v3 with MIT License | 6 votes |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32))
Example #23
Source File: resnet_v1_test.py From ctw-baseline with MIT License | 6 votes |
def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, include_root_block=False, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #24
Source File: resnet_v1_test.py From ctw-baseline with MIT License | 6 votes |
def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #25
Source File: resnet_v1_test.py From ctw-baseline with MIT License | 6 votes |
def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #26
Source File: resnet_v2_test.py From ctw-baseline with MIT License | 6 votes |
def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32))
Example #27
Source File: resnet_v2_test.py From ctw-baseline with MIT License | 6 votes |
def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #28
Source File: resnet_v2_test.py From ctw-baseline with MIT License | 6 votes |
def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #29
Source File: resnet_v2_test.py From ctw-baseline with MIT License | 6 votes |
def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, output_stride=output_stride, spatial_squeeze=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
Example #30
Source File: resnet_v2_test.py From ctw-baseline with MIT License | 6 votes |
def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, spatial_squeeze=False, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes))