Python nets.resnet_utils.Block() Examples
The following are 30
code examples of nets.resnet_utils.Block().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.resnet_utils
, or try the search function
.
Example #1
Source File: resnet_v1_test.py From terngrad with Apache License 2.0 | 6 votes |
def testEndPointsV1(self): """Test the end points of a tiny v1 bottleneck network.""" bottleneck = resnet_v1.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v1/shortcut', 'tiny/block1/unit_1/bottleneck_v1/conv1', 'tiny/block1/unit_1/bottleneck_v1/conv2', 'tiny/block1/unit_1/bottleneck_v1/conv3', 'tiny/block1/unit_2/bottleneck_v1/conv1', 'tiny/block1/unit_2/bottleneck_v1/conv2', 'tiny/block1/unit_2/bottleneck_v1/conv3', 'tiny/block2/unit_1/bottleneck_v1/shortcut', 'tiny/block2/unit_1/bottleneck_v1/conv1', 'tiny/block2/unit_1/bottleneck_v1/conv2', 'tiny/block2/unit_1/bottleneck_v1/conv3', 'tiny/block2/unit_2/bottleneck_v1/conv1', 'tiny/block2/unit_2/bottleneck_v1/conv2', 'tiny/block2/unit_2/bottleneck_v1/conv3'] self.assertItemsEqual(expected, end_points)
Example #2
Source File: resnet_v1.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #3
Source File: resnet_v2.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #4
Source File: resnet_v1.py From DOTA_models with Apache License 2.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #5
Source File: resnet_v1.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #6
Source File: resnet_v2.py From Creative-Adversarial-Networks with MIT License | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #7
Source File: resnet_v1.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v1_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_50'): """ResNet-50 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #8
Source File: resnet_v1.py From intermediate-cnn-features with Apache License 2.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #9
Source File: resnet_v2.py From ICPR_TextDection with GNU General Public License v3.0 | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #10
Source File: resnet_v1.py From ICPR_TextDection with GNU General Public License v3.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #11
Source File: resnet_v2.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v2_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #12
Source File: resnet_v2.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #13
Source File: resnet_v2.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v2_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #14
Source File: resnet_v2.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v2_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #15
Source File: resnet_v2_test.py From terngrad with Apache License 2.0 | 6 votes |
def testEndPointsV2(self): """Test the end points of a tiny v2 bottleneck network.""" bottleneck = resnet_v2.bottleneck blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]), resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v2/shortcut', 'tiny/block1/unit_1/bottleneck_v2/conv1', 'tiny/block1/unit_1/bottleneck_v2/conv2', 'tiny/block1/unit_1/bottleneck_v2/conv3', 'tiny/block1/unit_2/bottleneck_v2/conv1', 'tiny/block1/unit_2/bottleneck_v2/conv2', 'tiny/block1/unit_2/bottleneck_v2/conv3', 'tiny/block2/unit_1/bottleneck_v2/shortcut', 'tiny/block2/unit_1/bottleneck_v2/conv1', 'tiny/block2/unit_1/bottleneck_v2/conv2', 'tiny/block2/unit_1/bottleneck_v2/conv3', 'tiny/block2/unit_2/bottleneck_v2/conv1', 'tiny/block2/unit_2/bottleneck_v2/conv2', 'tiny/block2/unit_2/bottleneck_v2/conv3'] self.assertItemsEqual(expected, end_points)
Example #16
Source File: resnet_v1.py From Gun-Detector with Apache License 2.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #17
Source File: resnet_v2.py From Gun-Detector with Apache License 2.0 | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #18
Source File: resnet_v1.py From CBAM-tensorflow-slim with MIT License | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride, attention_module): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1, 'attention_module': attention_module }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride, 'attention_module': attention_module }])
Example #19
Source File: resnet_v2.py From CBAM-tensorflow-slim with MIT License | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride, attention_module): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1, 'attention_module': attention_module }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride, 'attention_module': attention_module }])
Example #20
Source File: resnet_v2.py From RetinaNet_Tensorflow_Rotation with MIT License | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #21
Source File: resnet_v2.py From DOTA_models with Apache License 2.0 | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #22
Source File: resnet_v1.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v1_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_101'): """ResNet-101 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #23
Source File: resnet_v1.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #24
Source File: resnet_v2.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #25
Source File: resnet_v1.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v1_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_152'): """ResNet-152 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #26
Source File: resnet_v1.py From terngrad with Apache License 2.0 | 6 votes |
def resnet_v1_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_200'): """ResNet-200 model of [2]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #27
Source File: resnet_v1.py From yolo_v2 with Apache License 2.0 | 6 votes |
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #28
Source File: resnet_v2.py From yolo_v2 with Apache License 2.0 | 6 votes |
def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])
Example #29
Source File: resnet_v2.py From hops-tensorflow with Apache License 2.0 | 6 votes |
def resnet_v2_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
Example #30
Source File: resnet_v2.py From hops-tensorflow with Apache License 2.0 | 6 votes |
def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)