Python tensorflow.contrib.tensorboard.plugins.projector.visualize_embeddings() Examples

The following are 30 code examples of tensorflow.contrib.tensorboard.plugins.projector.visualize_embeddings(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.tensorboard.plugins.projector , or try the search function .
Example #1
Source File: classifier.py    From chicksexer with MIT License 6 votes vote down vote up
def _visualize_embedding(self, model_path, summary_writer):
        """Create metadata file (and its config file) for tensorboard's embedding visualization."""
        metadata_path = os.path.join(model_path, self._tensorboard_dir, _EMBEDDING_METADATA_FILE)

        # create the metadata config file
        config = projector.ProjectorConfig()
        embedding = config.embeddings.add()
        embedding.tensor_name = self._nodes['embeddings'].name
        embedding.metadata_path = metadata_path
        projector.visualize_embeddings(summary_writer, config)

        # create metadata file
        with open(metadata_path, 'w', encoding='utf8') as metadata_file:
            metadata_file.write('Character\tID\n')
            for id_, char in enumerate(self._encoder.chars):
                metadata_file.write('{}\t{}\n'.format(char, id_)) 
Example #2
Source File: experiment.py    From neuralmonkey with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def visualize_embeddings(self) -> None:
        """Insert visualization of embeddings in TensorBoard.

        Visualize the embeddings of `EmbeddedFactorSequence` objects specified
        in the `main.visualize_embeddings` config attribute.
        """
        tb_projector = projector.ProjectorConfig()

        for sequence in self.model.visualize_embeddings:
            for i, (vocabulary, emb_matrix) in enumerate(
                    zip(sequence.vocabularies, sequence.embedding_matrices)):

                # TODO when vocabularies will have name parameter, change it
                path = self.get_path("seq.{}-{}.tsv".format(sequence.name, i))
                vocabulary.save_wordlist(path)

                embedding = tb_projector.embeddings.add()
                # pylint: disable=unsubscriptable-object
                embedding.tensor_name = emb_matrix.name
                embedding.metadata_path = path
                # pylint: enable=unsubscriptable-object

        summary_writer = tf.summary.FileWriter(self.model.output)
        projector.visualize_embeddings(summary_writer, tb_projector) 
Example #3
Source File: experiment.py    From neuralmonkey with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def visualize_embeddings(self) -> None:
        """Insert visualization of embeddings in TensorBoard.

        Visualize the embeddings of `EmbeddedFactorSequence` objects specified
        in the `main.visualize_embeddings` config attribute.
        """
        tb_projector = projector.ProjectorConfig()

        for sequence in self.model.visualize_embeddings:
            for i, (vocabulary, emb_matrix) in enumerate(
                    zip(sequence.vocabularies, sequence.embedding_matrices)):

                # TODO when vocabularies will have name parameter, change it
                path = self.get_path("seq.{}-{}.tsv".format(sequence.name, i))
                vocabulary.save_wordlist(path)

                embedding = tb_projector.embeddings.add()
                # pylint: disable=unsubscriptable-object
                embedding.tensor_name = emb_matrix.name
                embedding.metadata_path = path
                # pylint: enable=unsubscriptable-object

        summary_writer = tf.summary.FileWriter(self.model.output)
        projector.visualize_embeddings(summary_writer, tb_projector) 
Example #4
Source File: visualize-tensorboard.py    From inferbeddings with MIT License 6 votes vote down vote up
def main(argv):
    embeddings = tf.get_variable('W', shape=[10, 100], initializer=tf.contrib.layers.xavier_initializer())
    init_op = tf.global_variables_initializer()

    with tf.Session() as session:
        session.run(init_op)

        saver = tf.train.Saver()
        saver.save(session, "model.ckpt", 0)

        summary_writer = tf.summary.FileWriter('.')

        projector_config = projector.ProjectorConfig()

        embedding = projector_config.embeddings.add()
        embedding.tensor_name = embeddings.name

        projector.visualize_embeddings(summary_writer, projector_config) 
Example #5
Source File: chatbot_model.py    From seq2seq-chatbot with MIT License 6 votes vote down vote up
def save(self, filename):
        """Saves a checkpoint of the current model weights

        Args:
            filename: Checkpoint filename, such as best_model_checkpoint.ckpt.
                This file must exist within model_dir.
        """
        filepath = path.join(self.model_dir, filename)
        self.saver.save(self.session, filepath)

        config = projector.ProjectorConfig()
        if self.model_hparams.share_embedding:
            shared_embedding = config.embeddings.add()
            shared_embedding.tensor_name = "model/encoder/shared_embeddings_matrix"
            shared_embedding.metadata_path = Vocabulary.SHARED_VOCAB_FILENAME
        else:
            encoder_embedding = config.embeddings.add()
            encoder_embedding.tensor_name = "model/encoder/encoder_embeddings_matrix"
            encoder_embedding.metadata_path = Vocabulary.INPUT_VOCAB_FILENAME
            decoder_embedding = config.embeddings.add()
            decoder_embedding.tensor_name = "model/decoder/decoder_embeddings_matrix"
            decoder_embedding.metadata_path = Vocabulary.OUTPUT_VOCAB_FILENAME
        
        projector.visualize_embeddings(self.summary_writer, config) 
Example #6
Source File: embedding.py    From tensorflow-tbcnn with MIT License 6 votes vote down vote up
def write_embedding_metadata(writer, word2int):
    metadata_path = os.path.join(hyper.train_dir, 'embedding_meta.tsv')
    # dump embedding mapping
    items = sorted(word2int.items(), key=operator.itemgetter(1))
    with open(metadata_path, 'w') as f:
        for item in items:
            print(item[0], file=f)

    config = projector.ProjectorConfig()
    config.model_checkpoint_dir = hyper.train_dir
    # the above line not work yet. TF doesn't support model_checkpoint_dir
    # thus create a symlink from train_dir to log_dir
    os.symlink(os.path.join(hyper.train_dir, 'checkpoint'), os.path.join(hyper.log_dir, 'checkpoint'))

    embedding = config.embeddings.add()
    embedding.tensor_name = param.get('We').name
    # Link this tensor to its metadata file (e.g. labels).
    embedding.metadata_path = metadata_path
    # Saves a configuration file that TensorBoard will read during startup.
    projector.visualize_embeddings(writer, config) 
Example #7
Source File: experiment.py    From neuralmonkey with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def visualize_embeddings(self) -> None:
        """Insert visualization of embeddings in TensorBoard.

        Visualize the embeddings of `EmbeddedFactorSequence` objects specified
        in the `main.visualize_embeddings` config attribute.
        """
        tb_projector = projector.ProjectorConfig()

        for sequence in self.model.visualize_embeddings:
            for i, (vocabulary, emb_matrix) in enumerate(
                    zip(sequence.vocabularies, sequence.embedding_matrices)):

                # TODO when vocabularies will have name parameter, change it
                path = self.get_path("seq.{}-{}.tsv".format(sequence.name, i))
                vocabulary.save_wordlist(path)

                embedding = tb_projector.embeddings.add()
                # pylint: disable=unsubscriptable-object
                embedding.tensor_name = emb_matrix.name
                embedding.metadata_path = path
                # pylint: enable=unsubscriptable-object

        summary_writer = tf.summary.FileWriter(self.model.output)
        projector.visualize_embeddings(summary_writer, tb_projector) 
Example #8
Source File: Model.py    From natural-language-summary-generation-from-structured-data with MIT License 6 votes vote down vote up
def __get_tensorboard_writer(self, path):
        tensorboard_writer = tf.summary.FileWriter(path, graph=self.graph, filename_suffix=".bot")

        # set the projector's configuration to add the embedding summary also:
        conf = projector.ProjectorConfig()
        embedding_field = conf.embeddings.add()
        embedding_content_label = conf.embeddings.add()

        # set the tensors to these embedding matrices
        embedding_field.tensor_name = self.field_embedding_matrix.name
        embedding_content_label.tensor_name = self.content_label_embedding_matrix.name

        # add the metadata paths to these embedding_summaries:
        embedding_field.metadata_path = os.path.join("..", "Metadata/fields.vocab")
        embedding_content_label.metadata_path = os.path.join("..", "Metadata/content_labels.vocab")

        # save the configuration file for this
        projector.visualize_embeddings(tensorboard_writer, conf)

        # return the so created tensorboard_writer
        return tensorboard_writer

    # define the constructor of the graph 
Example #9
Source File: model.py    From long-summarization with Apache License 2.0 6 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    chkpt_dir = tf.train.latest_checkpoint(train_dir)
    print('chkpt_dir for embeddings: ', chkpt_dir)
    if chkpt_dir:
      config.model_checkpoint_path = chkpt_dir
    else:
      chkpt_dir = train_dir
    projector.visualize_embeddings(summary_writer, config) 
Example #10
Source File: tf_utils.py    From ZNLP with MIT License 6 votes vote down vote up
def visualize_sample_embeddings(sess, log_dir, words, word2idx, embeddings):  # embedding -> tf.get_variable()
    list_idx = map(lambda word: word2idx[word], words)
    # sample_embeddings = tf.gather(embeddings, list_idx, name="my_embeddings")
    # sample_embeddings = embeddings[list_idx]

    config = projector.ProjectorConfig()
    embedding_conf = config.embeddings.add()

    metadata_path = os.path.join(log_dir, 'metadata.tsv')
    with open(metadata_path, "w") as f:
        [f.write(word + "\n") for word in words]

    embedding_conf.tensor_name = embeddings.name  # embeddings.name
    embedding_conf.metadata_path = os.path.join(log_dir, 'metadata.tsv')
    if not os.path.exists(log_dir):
        os.mkdir(log_dir)

    summary_writer = tf.summary.FileWriter(log_dir, graph=sess.graph)
    projector.visualize_embeddings(summary_writer, config)
    # summary_writer.close() 
Example #11
Source File: model.py    From rotational-unit-of-memory with MIT License 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
        """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
        https://www.tensorflow.org/get_started/embedding_viz
        Make the vocab metadata file, then make the projector config file pointing to it."""
        train_dir = os.path.join(FLAGS.log_root, "train")
        vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
        self._vocab.write_metadata(vocab_metadata_path)  # write metadata file
        summary_writer = tf.summary.FileWriter(train_dir)
        config = projector.ProjectorConfig()
        embedding = config.embeddings.add()
        embedding.tensor_name = embedding_var.name
        embedding.metadata_path = vocab_metadata_path
        projector.visualize_embeddings(summary_writer, config) 
Example #12
Source File: experiment.py    From neuralmonkey with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def create_config(train_mode: bool = True) -> Configuration:
    config = Configuration()
    config.add_argument("tf_manager", required=False, default=None)
    config.add_argument("batch_size", required=False, default=None,
                        cond=lambda x: x is None or x > 0)
    config.add_argument("output")
    config.add_argument("postprocess", required=False, default=None)
    config.add_argument("runners")
    config.add_argument("random_seed", required=False, default=2574600)

    if train_mode:
        config.add_argument("epochs", cond=lambda x: x >= 0)
        config.add_argument("trainer")
        config.add_argument("train_dataset")
        config.add_argument("val_dataset", required=False, default=[])
        config.add_argument("evaluation")
        config.add_argument("test_datasets", required=False, default=[])
        config.add_argument("logging_period", required=False, default=20)
        config.add_argument("validation_period", required=False, default=500)
        config.add_argument("visualize_embeddings", required=False,
                            default=None)
        config.add_argument("val_preview_input_series",
                            required=False, default=None)
        config.add_argument("val_preview_output_series",
                            required=False, default=None)
        config.add_argument("val_preview_num_examples",
                            required=False, default=15)
        config.add_argument("train_start_offset", required=False, default=0)
        config.add_argument("name", required=False,
                            default="Neural Monkey Experiment")
        config.add_argument("initial_variables", required=False, default=None)
        config.add_argument("overwrite_output_dir", required=False,
                            default=False)
    else:
        config.add_argument("evaluation", required=False, default=None)
        for argument in _TRAIN_ARGS:
            config.ignore_argument(argument)

    return config 
Example #13
Source File: tensorboard_embedding.py    From VAE-GAN with MIT License 5 votes vote down vote up
def __init__(self, config):
		super(TensorboardEmbedding, self).__init__(config)

		self.assets_dir = self.config['assets dir']
		self.log_dir = self.config.get('log dir', 'embedding')
		self.log_dir = os.path.join(self.assets_dir, self.log_dir)

		self.z_shape = list(self.config['z shape'])
		self.x_shape = list(self.config['x shape'])
		self.nb_samples = self.config.get('nb samples', 1000)
		self.batch_size = self.config.get('batch_size', 100)

		self.nb_samples = self.nb_samples // self.batch_size * self.batch_size


		if not os.path.exists(self.log_dir):
			os.mkdir(self.log_dir)

		with open(os.path.join(self.log_dir, 'metadata.tsv'), 'w') as f:
			f.write("Index\tLabel\n")
			for i in range(self.nb_samples):
				f.write("%d\t%d\n"%(i, 0))
			for i in range(self.nb_samples):
				f.write("%d\t%d\n"%(i+self.nb_samples, 1))

		summary_writer = tf.summary.FileWriter(self.log_dir)
		config = projector.ProjectorConfig()
		embedding = config.embeddings.add()
		embedding.tensor_name = "test"
		embedding.metadata_path = "metadata.tsv"
		projector.visualize_embeddings(summary_writer, config)

		self.plot_array_var = tf.get_variable('test', shape=[self.nb_samples*2, int(np.product(self.x_shape))])
		self.saver = tf.train.Saver([self.plot_array_var]) 
Example #14
Source File: autoencoder_t-sne.py    From Autoencoder-TensorBoard-t-SNE with MIT License 5 votes vote down vote up
def generate_embeddings():
    # Load data, train an autoencoder and transform data
    embedded_data, sess = train_autoencoder_and_embed()

    # Input set for Embedded TensorBoard visualization
    # Performed with cpu to conserve memory and processing power
    with tf.device("/cpu:0"):
        embedding = tf.Variable(tf.stack(embedded_data, axis=0), trainable=False, name='embedding')

    sess.run(tf.global_variables_initializer())

    saver = tf.train.Saver()
    writer = tf.summary.FileWriter(FLAGS.log_dir + '/projector', sess.graph)

    # Add embedding tensorboard visualization. Need tensorflow version
    # >= 0.12.0RC0
    config = projector.ProjectorConfig()
    embed= config.embeddings.add()
    embed.tensor_name = 'embedding:0'
    embed.metadata_path = os.path.join(FLAGS.log_dir + '/projector/metadata.tsv')
    embed.sprite.image_path = os.path.join(FLAGS.data_dir + '/mnist_10k_sprite.png')

    # Specify the width and height of a single thumbnail.
    embed.sprite.single_image_dim.extend([28, 28])
    projector.visualize_embeddings(writer, config)

    # We save the embeddings for TensorBoard, setting the global step as
    # The number of data examples
    saver.save(sess, os.path.join(
        FLAGS.log_dir, 'projector/a_model.ckpt'), global_step=NB_TEST_DATA)

    sess.close() 
Example #15
Source File: visualize_tb.py    From Jacinle with MIT License 5 votes vote down vote up
def visualize_word_embedding_tb(emb, log_dir):
    # https://stackoverflow.com/questions/41258391/tensorboard-embedding-example#answer-42676076

    if isinstance(emb, tuple):  # embedding, word2idx
        words = sorted(emb[1].keys(), key=lambda x: emb[1][x])
        embedding = np.array(emb[0])
    else:
        words = emb.keys()
        embedding = np.stack([emb[key] for key in words])

    # setup a TensorFlow session
    tf.reset_default_graph()
    embedding_var = tf.Variable(embedding, name='embedding')

    with open(osp.join(log_dir, 'metadata.tsv'), 'w') as f:
        for w in words:
            f.write(w + '\n')

    # create a TensorFlow summary writer
    summary_writer = tf.summary.FileWriter(log_dir, tf.get_default_graph())
    config = projector.ProjectorConfig()
    embedding_conf = config.embeddings.add()
    embedding_conf.tensor_name = embedding_var.name
    embedding_conf.metadata_path = 'metadata.tsv'
    projector.visualize_embeddings(summary_writer, config)

    # save the model
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(embedding_var.initializer)
        saver.save(sess, osp.join(log_dir, "model.ckpt")) 
Example #16
Source File: tensorboard_embedding.py    From keras_experiments with The Unlicense 5 votes vote down vote up
def set_model(self, model):
        if self.embeddings_freq:
            self.saver = tf.train.Saver()

            embeddings_layer_names = self.embeddings_layer_names

            elayers = find_embedding_layers(model.layers)
            if not embeddings_layer_names:
                embeddings_layer_names = [layer.name for layer in elayers]

            embeddings = {layer.name: layer.weights[0] for layer in elayers
                          if layer.name in embeddings_layer_names}

            embeddings_metadata = {}

            if not isinstance(self.embeddings_metadata, str):
                embeddings_metadata = self.embeddings_metadata
            else:
                embeddings_metadata = {layer_name: self.embeddings_metadata
                                       for layer_name in embeddings.keys()}

            config = projector.ProjectorConfig()
            self.embeddings_logs = []

            for layer_name, tensor in embeddings.items():
                embedding = config.embeddings.add()
                embedding.tensor_name = tensor.name

                self.embeddings_logs.append(os.path.join(self.log_dir,
                                                         layer_name + '.ckpt'))

                if layer_name in embeddings_metadata:
                    embedding.metadata_path = embeddings_metadata[layer_name]

            projector.visualize_embeddings(self.writer, config) 
Example #17
Source File: components.py    From -Learn-Artificial-Intelligence-with-TensorFlow with MIT License 5 votes vote down vote up
def init_embeddings_projector(vocab_path, tensor_name, logdir):
    """Saves the projector_config.pbtxt file in `logdir`, to be used
    by the TensorBoard Projector.
    """
    # Define the protobuf object that will eventually be saved in text format
    # as projector_config.pbtxt, within `logdir`. TensorBoard will automatically
    # read that file and associate the elements of `tensor_name` with the
    # vocabulary words specified in the `vocab_path` file.
    config = projector.ProjectorConfig(embeddings=[projector.EmbeddingInfo(
        tensor_name=tensor_name,
        metadata_path=vocab_path)])
    # Call visualize_embeddings to execute the saving of the .pbtxt file.
    writer = tf.summary.FileWriter(logdir)
    projector.visualize_embeddings(writer, config) 
Example #18
Source File: embeddings.py    From tf_autoencoder with Apache License 2.0 5 votes vote down vote up
def save_as_embedding(data, save_path, metadata_path=None, sprite_image_path=None):
    """Save data as embedding in checkpoint.

    Parameters
    ----------
    data : ndarray
        Data to store as embedding.
    save_path : str
        Path to the checkpoint filename.
    metadata_path : str|None
        Path to meta-data file.
    sprite_image_path : str|None
        Path to sprite images.
    """
    checkpoint_dir = dirname(save_path)

    with tf.Graph().as_default() as g:
        with tf.Session() as sess:
            embedding_var = tf.Variable(data, name='embedding')

            writer = tf.summary.FileWriter(checkpoint_dir, g)
            sess.run(embedding_var.initializer)

            config = projector.ProjectorConfig()
            embedding = config.embeddings.add()
            embedding.tensor_name = embedding_var.name
            if metadata_path is not None:
                embedding.metadata_path = metadata_path
            if sprite_image_path is not None:
                embedding.sprite.image_path = sprite_image_path
                # Specify the width and height of a single thumbnail.
                embedding.sprite.single_image_dim.extend([28, 28])

            projector.visualize_embeddings(writer, config)
            saver_embed = tf.train.Saver([embedding_var])
            saver_embed.save(sess, save_path, 1)
            writer.close() 
Example #19
Source File: model.py    From unified-summarization with MIT License 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    projector.visualize_embeddings(summary_writer, config) 
Example #20
Source File: model.py    From unified-summarization with MIT License 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    projector.visualize_embeddings(summary_writer, config) 
Example #21
Source File: model.py    From pointer-generator with Apache License 2.0 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    projector.visualize_embeddings(summary_writer, config) 
Example #22
Source File: 04_word2vec_visualize.py    From stanford-tensorflow-tutorials with MIT License 5 votes vote down vote up
def visualize(self, visual_fld, num_visualize):
        """ run "'tensorboard --logdir='visualization'" to see the embeddings """
        
        # create the list of num_variable most common words to visualize
        word2vec_utils.most_common_words(visual_fld, num_visualize)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))

            # if that checkpoint exists, restore from checkpoint
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

            final_embed_matrix = sess.run(self.embed_matrix)
            
            # you have to store embeddings in a new variable
            embedding_var = tf.Variable(final_embed_matrix[:num_visualize], name='embedding')
            sess.run(embedding_var.initializer)

            config = projector.ProjectorConfig()
            summary_writer = tf.summary.FileWriter(visual_fld)

            # add embedding to the config file
            embedding = config.embeddings.add()
            embedding.tensor_name = embedding_var.name
            
            # link this tensor to its metadata file, in this case the first NUM_VISUALIZE words of vocab
            embedding.metadata_path = 'vocab_' + str(num_visualize) + '.tsv'

            # saves a configuration file that TensorBoard will read during startup.
            projector.visualize_embeddings(summary_writer, config)
            saver_embed = tf.train.Saver([embedding_var])
            saver_embed.save(sess, os.path.join(visual_fld, 'model.ckpt'), 1) 
Example #23
Source File: train.py    From vqvae-speech with MIT License 5 votes vote down vote up
def visualize_embeddings(logdir, var_list, tsv_list):
  assert len(var_list) == len(tsv_list), 'Inconsistent length of lists'

  config = projector.ProjectorConfig()
  for v, f in zip(var_list, tsv_list):
    embedding = config.embeddings.add()
    embedding.tensor_name = v.name
    if f is not None:
      _, filename = os.path.split(f)
      meta_tsv = os.path.join(logdir, filename)
      tf.gfile.Copy(f, meta_tsv)  
      embedding.metadata_path = filename  # save relative path

  writer = SummaryWriterCache.get(logdir)
  projector.visualize_embeddings(writer, config) 
Example #24
Source File: 11_w2v_visual.py    From deep-learning-note with MIT License 5 votes vote down vote up
def visualize(self, visual_fld, num_visualize):
        """ run "'tensorboard --logdir='visualization'" to see the embeddings """

        # create the list of num_variable most common words to visualize
        w2v_utils.most_common_words(visual_fld, num_visualize)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            ckpt = tf.train.get_checkpoint_state(os.path.dirname('data/checkpoints/checkpoint'))

            # if that checkpoint exists, restore from checkpoint
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

            final_embed_matrix = sess.run(self.embed_matrix)

            # you have to store embeddings in a new variable
            embedding_var = tf.Variable(final_embed_matrix[:num_visualize], name='embedding')
            sess.run(embedding_var.initializer)

            config = projector.ProjectorConfig()
            summary_writer = tf.summary.FileWriter(visual_fld)

            # add embedding to the config file
            embedding = config.embeddings.add()
            embedding.tensor_name = embedding_var.name

            # link this tensor to its metadata file, in this case the first NUM_VISUALIZE words of vocab
            embedding.metadata_path = 'vocab_' + str(num_visualize) + '.tsv'

            # saves a configuration file that TensorBoard will read during startup.
            projector.visualize_embeddings(summary_writer, config)
            saver_embed = tf.train.Saver([embedding_var])
            saver_embed.save(sess, os.path.join(visual_fld, 'model.ckpt'), 1) 
Example #25
Source File: embedding_visualization.py    From HardRLWithYoutube with MIT License 5 votes vote down vote up
def visualize_embeddings(embeddings, experiment_name='default'):
    """Save the embeddings to be visualised using t-sne on TensorBoard
    
    Based on https://medium.com/@vegi/visualizing-higher-dimensional-data-using-t-sne-on-tensorboard-7dbf22682cf2
    """
    tf_embeddings = tf.Variable(np.concatenate(embeddings, 0))

    # Generate metadata
    metadata = 'video_index\tframe_index\n'
    for video_index in range(len(embeddings)):
        for frame_index in range(embeddings[video_index].shape[0]):
            metadata += '{}\t{}\n'.format(video_index, frame_index)

    metadata_path = 'embeddings/{}/labels.tsv'.format(experiment_name)
    with open(metadata_path, 'w') as metadata_file:
        metadata_file.write(metadata)


    with tf.Session() as sess:
        saver = tf.train.Saver([tf_embeddings])
        sess.run(tf_embeddings.initializer)
        saver.save(sess, 'embeddings/{}/embeddings.ckpt'.format(experiment_name))
        config = projector.ProjectorConfig()

        embedding = config.embeddings.add()

        embedding.tensor_name = tf_embeddings.name
        embedding.metadata_path = metadata_path.split('/')[-1]

        projector.visualize_embeddings(tf.summary.FileWriter('embeddings/{}'.format(experiment_name)), config) 
Example #26
Source File: model.py    From TransferRL with MIT License 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    projector.visualize_embeddings(summary_writer, config) 
Example #27
Source File: embeddings_formatter.py    From embeddingsviz with MIT License 5 votes vote down vote up
def add_multiple_embeddings(log_dir, file_list, name_list):
    """ Creates the files necessary for the multiple embeddings

    :param log_dir: destination directory for the model and metadata (the one to which TensorBoard points)
    :param file_list: list of embeddings files
    :param name_list: names of the embeddings files
    :return:
    """
    # setup a TensorFlow session
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    config = projector.ProjectorConfig()

    for i, file in enumerate(file_list):
        tensor_name = name_list[i]

        print('creating the embedding with the name ' + tensor_name)
        create_embeddings(sess, log_dir, embedding_file=file,
                          tensor_name=tensor_name)
        # create a TensorFlow summary writer
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)

        embedding_conf = config.embeddings.add()
        embedding_conf.tensor_name = tensor_name + ':0'
        embedding_conf.metadata_path = os.path.join(tensor_name + '_' + 'metadata.tsv')
        projector.visualize_embeddings(summary_writer, config)

        # save the model
        saver = tf.train.Saver()
        saver.save(sess, os.path.join(log_dir, tensor_name + '_' + "model.ckpt"))

    print('finished successfully!') 
Example #28
Source File: model.py    From RLSeq2Seq with MIT License 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
    """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
    train_dir = os.path.join(FLAGS.log_root, "train")
    vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
    self._vocab.write_metadata(vocab_metadata_path) # write metadata file
    summary_writer = tf.summary.FileWriter(train_dir)
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = embedding_var.name
    embedding.metadata_path = vocab_metadata_path
    projector.visualize_embeddings(summary_writer, config) 
Example #29
Source File: mnist_projector_show.py    From deep-learning-note with MIT License 5 votes vote down vote up
def visualisation(final_result):
    # 使用一个新的变量来保存最终输出层向量的结果
    # 因为 embedding 是通过 Tensorflow 中的变量完成的,所以 PROJECTOR 可视化的都是 TF 变量
    y = tf.Variable(final_result, name = TENSOR_NAME)
    summary_writer = tf.summary.FileWriter(LOG_DIR)

    # 通过 PROJECTOR 生成日志
    config = projector.ProjectorConfig()
    embedding = config.embeddings.add()
    embedding.tensor_name = y.name

    # 指定 embedding 对应的原始数据信息
    embedding.metadata_path = META_FILE

    # 指定 sprite 图像及大小
    embedding.sprite.image_path = SPRITE_FILE
    embedding.sprite.single_image_dim.extend([28, 28])

    # 写入日志
    projector.visualize_embeddings(summary_writer, config)

    # 生成会话,写入文件
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS)

    summary_writer.close()


# 主函数先调用模型训练,再处理测试数据,最后将输出矩阵输出到 PROJECTOR 需要的日志文件中 
Example #30
Source File: model.py    From MAX-Text-Summarizer with Apache License 2.0 5 votes vote down vote up
def _add_emb_vis(self, embedding_var):
        """Do setup so that we can view word embedding visualization in Tensorboard, as described here:
    https://www.tensorflow.org/get_started/embedding_viz
    Make the vocab metadata file, then make the projector config file pointing to it."""
        train_dir = os.path.join(FLAGS.log_root, "train")
        vocab_metadata_path = os.path.join(train_dir, "vocab_metadata.tsv")
        self._vocab.write_metadata(vocab_metadata_path)  # write metadata file
        summary_writer = tf.summary.FileWriter(train_dir)
        config = projector.ProjectorConfig()
        embedding = config.embeddings.add()
        embedding.tensor_name = embedding_var.name
        embedding.metadata_path = vocab_metadata_path
        projector.visualize_embeddings(summary_writer, config)