Python tables.openFile() Examples

The following are 25 code examples of tables.openFile(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tables , or try the search function .
Example #1
Source File: utils.py    From mmvt with GNU General Public License v3.0 5 votes vote down vote up
def read_mat_file_into_bag(mat_fname):
    try:
        import scipy.io as sio
        x = sio.loadmat(mat_fname)
        return Bag(**x)
    except NotImplementedError:
        import tables
        from src.utils import tables_utils as tu
        x = tables.openFile(mat_fname)
        ret = Bag(**tu.read_tables_into_dict(x))
        x.close()
        return ret
    return None 
Example #2
Source File: moving_mnist.py    From RATM with MIT License 5 votes vote down vote up
def dump_test_set(self, h5filepath, nframes, framesize):
        # set rng to a hardcoded state, so we always have the same test set!
        self.numpy_rng.seed(1)
        with tables.openFile(h5filepath, 'w') as h5file:

            h5file.createArray(h5file.root, 'test_targets',
                               self.partitions['test']['targets'])

            vids = h5file.createCArray(
                h5file.root,
                'test_images',
                tables.Float32Atom(),
                shape=(10000,
                       nframes, framesize, framesize),
                filters=tables.Filters(complevel=5, complib='zlib'))

            pos = h5file.createCArray(
                h5file.root,
                'test_pos',
                tables.UInt16Atom(),
                shape=(10000,
                       nframes, 2),
                filters=tables.Filters(complevel=5, complib='zlib'))
            for i in range(100):
                print i
                (vids[i*100:(i+1)*100],
                 pos[i*100:(i+1)*100], _) = self.get_batch(
                     'test', 100, nframes, framesize,
                     idx=np.arange(i*100,(i+1)*100))
                h5file.flush() 
Example #3
Source File: model.py    From RATM with MIT License 5 votes vote down vote up
def load_h5(self, filename):
        h5file = tables.openFile(filename, 'r')
        new_params = {}
        for p in h5file.listNodes(h5file.root):
            new_params[p.name] = p.read()
        self.updateparams_fromdict(new_params)
        h5file.close() 
Example #4
Source File: model.py    From RATM with MIT License 5 votes vote down vote up
def save_h5(self, filename):
        try:
            shutil.copyfile(filename, '{}_bak'.format(filename))
        except IOError:
            print 'could not make backup of model param file (which is normal if we haven\'t saved one until now)'

        with tables.openFile(filename, 'w') as h5file:
            for p in self.params:
                h5file.createArray(h5file.root, p.name, p.get_value())
                h5file.flush() 
Example #5
Source File: autorun.py    From lmatools with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def test_output():
    import tables as T
    h5 = T.openFile('/Users/ebruning/out/LYLOUT_040526_213000_0600.dat.gz.flash.h5')
    flashes = h5.root.flashes.LMA_040526_213000_600
    events  = h5.root.events.LMA_040526_213000_600
    # flashes.cols.n_points[0:100]
    big = [fl['flash_id'] for fl in flashes if fl['n_points'] > 100]
    a_flash = big[0]
    points = [ev['lat'] for ev in events if ev['flash_id'] == a_flash]
    print(flashes.cols.init_lon[0:10]) 
Example #6
Source File: autorun_mflash.py    From lmatools with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def test_output():
    import tables as T
    h5 = T.openFile('/Users/ebruning/out/LYLOUT_040526_213000_0600.dat.gz.flash.h5')
    flashes = h5.root.flashes.LMA_040526_213000_600
    events  = h5.root.events.LMA_040526_213000_600
    # flashes.cols.n_points[0:100]
    big = [fl['flash_id'] for fl in flashes if fl['n_points'] > 100]
    a_flash = big[0]
    points = [ev['lat'] for ev in events if ev['flash_id'] == a_flash]
    print(flashes.cols.init_lon[0:10]) 
Example #7
Source File: hdf5_getters.py    From mm-songs-db-tools with GNU General Public License v3.0 5 votes vote down vote up
def open_h5_file_read(h5filename):
    """
    Open an existing H5 in read mode.
    Same function as in hdf5_utils, here so we avoid one import
    """
    return tables.openFile(h5filename, mode='r') 
Example #8
Source File: rc_data_iter.py    From Attentive_reader with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def synchronized_open_file(*args, **kwargs):
    if tables.__version__[0] == '2':
        tbf = tables.openFile(*args, **kwargs)
    else:
        tbf = tables.open_file(*args, **kwargs)
    return tbf 
Example #9
Source File: rc_data_iter.py    From Attentive_reader with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def get_length(path):
    if tables.__version__[0] == '2':
        target_table = tables.openFile(path, 'r')
        target_index = target_table.getNode('/indices')
    else:
        target_table = tables.open_file(path, 'r')
        target_index = target_table.get_node('/indices')

    return target_index.shape[0] 
Example #10
Source File: rc_data_iter_multi.py    From Attentive_reader with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def synchronized_open_file(*args, **kwargs):
    if tables.__version__[0] == '2':
        tbf = tables.openFile(*args, **kwargs)
    else:
        tbf = tables.open_file(*args, **kwargs)
    return tbf 
Example #11
Source File: rc_data_iter_multi.py    From Attentive_reader with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def get_length(path):
    if tables.__version__[0] == '2':
        target_table = tables.openFile(path, 'r')
        target_index = target_table.getNode('/indices')
    else:
        target_table = tables.open_file(path, 'r')
        target_index = target_table.get_node('/indices')

    return target_index.shape[0] 
Example #12
Source File: tables_utils.py    From mmvt with GNU General Public License v3.0 5 votes vote down vote up
def open_hdf5_file(file_name, mode='a'):
    try:
        return tables.open_file(file_name, mode=mode)
    except:
        return tables.openFile(file_name, mode=mode)


# dtype = np.dtype('int16') / np.dtype('float64') 
Example #13
Source File: tables_utils.py    From mmvt with GNU General Public License v3.0 5 votes vote down vote up
def create_hdf5_file(file_name):
    try:
        return tables.open_file(file_name, mode='w')
    except:
        return tables.openFile(file_name, mode='w') 
Example #14
Source File: preprocess.py    From LV_groundhog with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def safe_hdf(array, name):
    if os.path.isfile(name + '.hdf') and not args.overwrite:
        logger.warning("Not saving %s, already exists." % (name + '.hdf'))
    else:
        if os.path.isfile(name + '.hdf'):
            logger.info("Overwriting %s." % (name + '.hdf'))
        else:
            logger.info("Saving to %s." % (name + '.hdf'))
        with tables.openFile(name + '.hdf', 'w') as f:
            atom = tables.Atom.from_dtype(array.dtype)
            filters = tables.Filters(complib='blosc', complevel=5)
            ds = f.createCArray(f.root, name.replace('.', ''), atom,
                                array.shape, filters=filters)
            ds[:] = array 
Example #15
Source File: hdf5_getters.py    From MusicGenreClassification with MIT License 5 votes vote down vote up
def open_h5_file_read(h5filename):
    """
    Open an existing H5 in read mode.
    Same function as in hdf5_utils, here so we avoid one import
    """
    return tables.openFile(h5filename, mode='r') 
Example #16
Source File: hdf5_getters.py    From Million-Song-Dataset-HDF5-to-CSV with MIT License 5 votes vote down vote up
def open_h5_file_read(h5filename):
    """
    Open an existing H5 in read mode.
    Same function as in hdf5_utils, here so we avoid one import
    """
    return tables.openFile(h5filename, mode='r') 
Example #17
Source File: preprocess.py    From NMT-Coverage with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def safe_hdf(array, name):
    if os.path.isfile(name + '.hdf') and not args.overwrite:
        logger.warning("Not saving %s, already exists." % (name + '.hdf'))
    else:
        if os.path.isfile(name + '.hdf'):
            logger.info("Overwriting %s." % (name + '.hdf'))
        else:
            logger.info("Saving to %s." % (name + '.hdf'))
        with tables.openFile(name + '.hdf', 'w') as f:
            atom = tables.Atom.from_dtype(array.dtype)
            filters = tables.Filters(complib='blosc', complevel=5)
            ds = f.createCArray(f.root, name.replace('.', ''), atom,
                                array.shape, filters=filters)
            ds[:] = array 
Example #18
Source File: dense_design_matrix.py    From TextDetector with GNU General Public License v3.0 5 votes vote down vote up
def init_hdf5(self, path, shapes,
                  title="Pytables Dataset",
                  y_dtype='float'):
        """
        Initializes the hdf5 file into which the data will be stored. This must
        be called before calling fill_hdf5.

        Parameters
        ----------
        path : string
            The name of the hdf5 file.
        shapes : tuple
            The shapes of X and y.
        title : string, optional
            Name of the dataset. e.g. For SVHN, set this to "SVHN Dataset".
            "Pytables Dataset" is used as title, by default.
        y_dtype : string, optional
            Either 'float' or 'int'. Decides the type of pytables atom
            used to store the y data. By default 'float' type is used.
        """
        assert y_dtype in ['float', 'int'], (
            "y_dtype can be 'float' or 'int' only"
        )

        x_shape, y_shape = shapes
        # make pytables
        ensure_tables()
        h5file = tables.openFile(path, mode="w", title=title)
        gcolumns = h5file.createGroup(h5file.root, "Data", "Data")
        atom = (tables.Float32Atom() if config.floatX == 'float32'
                else tables.Float64Atom())
        h5file.createCArray(gcolumns, 'X', atom=atom, shape=x_shape,
                            title="Data values", filters=self.filters)
        if y_dtype != 'float':
            # For 1D ndarray of int labels, override the atom to integer
            atom = (tables.Int32Atom() if config.floatX == 'float32'
                    else tables.Int64Atom())
        h5file.createCArray(gcolumns, 'y', atom=atom, shape=y_shape,
                            title="Data targets", filters=self.filters)
        return h5file, gcolumns 
Example #19
Source File: model.py    From Emotion-Recognition-RNN with MIT License 5 votes vote down vote up
def load_h5(self, filename):
        h5file = tables.openFile(filename, 'r')
        new_params = {}
        for p in h5file.listNodes(h5file.root):
            new_params[p.name] = p.read()
        self.updateparams_fromdict(new_params)
        h5file.close() 
Example #20
Source File: model.py    From Emotion-Recognition-RNN with MIT License 5 votes vote down vote up
def save_h5(self, filename):
        try:
            shutil.copyfile(filename, '{}_bak'.format(filename))
        except IOError:
            print 'could not make backup of model param file (which is normal if we haven\'t saved one until now)'

        with tables.openFile(filename, 'w') as h5file:
            for p in self.params:
                h5file.createArray(h5file.root, p.name, p.get_value())
                h5file.flush() 
Example #21
Source File: model.py    From Emotion-Recognition-RNN with MIT License 5 votes vote down vote up
def load_h5(self, filename):
        h5file = tables.openFile(filename, 'r')
        new_params = {}
        for p in h5file.listNodes(h5file.root):
            new_params[p.name] = p.read()
        self.updateparams_fromdict(new_params)
        h5file.close() 
Example #22
Source File: model.py    From Emotion-Recognition-RNN with MIT License 5 votes vote down vote up
def save_h5(self, filename):
        try:
            shutil.copyfile(filename, '{}_bak'.format(filename))
        except IOError:
            print 'could not make backup of model param file (which is normal if we haven\'t saved one until now)'

        with tables.openFile(filename, 'w') as h5file:
            for p in self.params:
                h5file.createArray(h5file.root, p.name, p.get_value())
                h5file.flush() 
Example #23
Source File: data_source_tables_gen.py    From zipline-chinese with Apache License 2.0 5 votes vote down vote up
def merge_all_files_into_pytables(file_dir, file_out):
    """
    process each file into pytables
    """
    start = None
    start = datetime.datetime.now()
    out_h5 = tables.openFile(file_out,
                             mode="w",
                             title="bars",
                             filters=tables.Filters(complevel=9,
                                                    complib='zlib'))
    table = None
    for file_in in glob.glob(file_dir + "/*.gz"):
        gzip_file = gzip.open(file_in)
        expected_header = ["dt", "sid", "open", "high", "low", "close",
                           "volume"]
        csv_reader = csv.DictReader(gzip_file)
        header = csv_reader.fieldnames
        if header != expected_header:
            logging.warn("expected header %s\n" % (expected_header))
            logging.warn("header_found %s" % (header))
            return

        for current_date, rows in parse_csv(csv_reader):
            table = out_h5.createTable("/TD", "date_" + current_date,
                                       OHLCTableDescription,
                                       expectedrows=len(rows),
                                       createparents=True)
            table.append(rows)
            table.flush()
        if table is not None:
            table.flush()
    end = datetime.datetime.now()
    diff = (end - start).seconds
    logging.debug("finished  it took %d." % (diff)) 
Example #24
Source File: psutils.py    From picosdk-python-examples with ISC License 5 votes vote down vote up
def _f_open(self, args):
        if not self._opened:
            self._filename = args["filename"]
            self._title = args["title"]
            if self._title is None or not isinstance(self._title, basestring):
                self._title = strftime("PicoTape-%Y%m%d-%H%M%S")
            self._limit = args["limit"]
            self._overwrite = args["overwrite"]
            if self._filename is not None:
                self._fhandle = None
                error = "OK"
                try:
                    if not os.path.exists(os.path.dirname(self._filename)):
                        error = "Path to %s not found" % self._filename
                    elif not self._overwrite and os.path.exists(self._filename):
                        error = "File %s exists" % self._filename
                    else:
                        self._fhandle = tb.openFile(self._filename, title=self._title, mode="w")
                except Exception as ex:
                    self._fhandle = None
                    error = ex.message
                if self._fhandle is not None:
                    self._opened = True
                self._readq.put(error)
            else:
                self._memstore = True
                self._opened = True
                self._readq.put("OK")
            self._stats = args["stats"] and not self._memstore 
Example #25
Source File: hdf5_getters.py    From stochastic_PMF with GNU General Public License v3.0 5 votes vote down vote up
def open_h5_file_read(h5filename):
    """
    Open an existing H5 in read mode.
    Same function as in hdf5_utils, here so we avoid one import
    """
    return tables.openFile(h5filename, mode='r')