Python data_helpers.load_data() Examples

The following are 7 code examples of data_helpers.load_data(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module data_helpers , or try the search function .
Example #1
Source File: text_cnn.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    print('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    print('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    print('train shape:', x_train.shape)
    print('valid shape:', x_dev.shape)
    print('sentence max words', sentence_size)
    print('embedding size', embed_size)
    print('vocab size', vocab_size)

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)

    return (train, valid, sentence_size, embed_size, vocab_size) 
Example #2
Source File: text_cnn.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    logger.info('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    logger.info('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    logger.info('train shape: %(shape)s', {'shape': x_train.shape})
    logger.info('valid shape: %(shape)s', {'shape': x_dev.shape})
    logger.info('sentence max words: %(shape)s', {'shape': sentence_size})
    logger.info('embedding size: %(msg)s', {'msg': embed_size})
    logger.info('vocab size: %(msg)s', {'msg': vocab_size})

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)
    return (train, valid, sentence_size, embed_size, vocab_size) 
Example #3
Source File: text_cnn.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    print('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    print('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    print('train shape:', x_train.shape)
    print('valid shape:', x_dev.shape)
    print('sentence max words', sentence_size)
    print('embedding size', embed_size)
    print('vocab size', vocab_size)

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)

    return (train, valid, sentence_size, embed_size, vocab_size) 
Example #4
Source File: text_cnn.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    logger.info('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    logger.info('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    logger.info('train shape: %(shape)s', {'shape': x_train.shape})
    logger.info('valid shape: %(shape)s', {'shape': x_dev.shape})
    logger.info('sentence max words: %(shape)s', {'shape': sentence_size})
    logger.info('embedding size: %(msg)s', {'msg': embed_size})
    logger.info('vocab size: %(msg)s', {'msg': vocab_size})

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)
    return (train, valid, sentence_size, embed_size, vocab_size) 
Example #5
Source File: sentiment_cnn.py    From CNN-for-Sentence-Classification-in-Keras with MIT License 5 votes vote down vote up
def load_data(data_source):
    assert data_source in ["keras_data_set", "local_dir"], "Unknown data source"
    if data_source == "keras_data_set":
        (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_words, start_char=None,
                                                              oov_char=None, index_from=None)

        x_train = sequence.pad_sequences(x_train, maxlen=sequence_length, padding="post", truncating="post")
        x_test = sequence.pad_sequences(x_test, maxlen=sequence_length, padding="post", truncating="post")

        vocabulary = imdb.get_word_index()
        vocabulary_inv = dict((v, k) for k, v in vocabulary.items())
        vocabulary_inv[0] = "<PAD/>"
    else:
        x, y, vocabulary, vocabulary_inv_list = data_helpers.load_data()
        vocabulary_inv = {key: value for key, value in enumerate(vocabulary_inv_list)}
        y = y.argmax(axis=1)

        # Shuffle data
        shuffle_indices = np.random.permutation(np.arange(len(y)))
        x = x[shuffle_indices]
        y = y[shuffle_indices]
        train_len = int(len(x) * 0.9)
        x_train = x[:train_len]
        y_train = y[:train_len]
        x_test = x[train_len:]
        y_test = y[train_len:]

    return x_train, y_train, x_test, y_test, vocabulary_inv


# Data Preparation 
Example #6
Source File: text_cnn.py    From SNIPER-mxnet with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    print('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    print('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    print('train shape:', x_train.shape)
    print('valid shape:', x_dev.shape)
    print('sentence max words', sentence_size)
    print('embedding size', embed_size)
    print('vocab size', vocab_size)

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)

    return (train, valid, sentence_size, embed_size, vocab_size) 
Example #7
Source File: text_cnn.py    From SNIPER-mxnet with Apache License 2.0 5 votes vote down vote up
def data_iter(batch_size, num_embed, pre_trained_word2vec=False):
    logger.info('Loading data...')
    if pre_trained_word2vec:
        word2vec = data_helpers.load_pretrained_word2vec('data/rt.vec')
        x, y = data_helpers.load_data_with_word2vec(word2vec)
        # reshpae for convolution input
        x = np.reshape(x, (x.shape[0], 1, x.shape[1], x.shape[2]))
        embed_size = x.shape[-1]
        sentence_size = x.shape[2]
        vocab_size = -1
    else:
        x, y, vocab, vocab_inv = data_helpers.load_data()
        embed_size = num_embed
        sentence_size = x.shape[1]
        vocab_size = len(vocab)

    # randomly shuffle data
    np.random.seed(10)
    shuffle_indices = np.random.permutation(np.arange(len(y)))
    x_shuffled = x[shuffle_indices]
    y_shuffled = y[shuffle_indices]

    # split train/valid set
    x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
    y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
    logger.info('Train/Valid split: %d/%d' % (len(y_train), len(y_dev)))
    logger.info('train shape: %(shape)s', {'shape': x_train.shape})
    logger.info('valid shape: %(shape)s', {'shape': x_dev.shape})
    logger.info('sentence max words: %(shape)s', {'shape': sentence_size})
    logger.info('embedding size: %(msg)s', {'msg': embed_size})
    logger.info('vocab size: %(msg)s', {'msg': vocab_size})

    train = mx.io.NDArrayIter(
        x_train, y_train, batch_size, shuffle=True)
    valid = mx.io.NDArrayIter(
        x_dev, y_dev, batch_size)
    return (train, valid, sentence_size, embed_size, vocab_size)