Python torch.initial_seed() Examples
The following are 18
code examples of torch.initial_seed().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch
, or try the search function
.
Example #1
Source File: utils.py From moses with MIT License | 5 votes |
def set_torch_seed_to_all_gens(_): seed = torch.initial_seed() % (2**32 - 1) random.seed(seed) np.random.seed(seed)
Example #2
Source File: adaptor_dataset.py From video_analyst with MIT License | 5 votes |
def __getitem__(self, item): if self.datapipeline is None: # build datapipeline with random seed the first time when __getitem__ is called # usually, dataset is already spawned (into subprocess) at this point. seed = (torch.initial_seed() + item * self._SEED_STEP + self.ext_seed * self._EXT_SEED_STEP) % self._SEED_DIVIDER self.datapipeline = datapipeline_builder.build(self.task, self.cfg, seed=seed) logger.info("AdaptorDataset #%d built datapipeline with seed=%d" % (item, seed)) training_data = self.datapipeline[item] return training_data
Example #3
Source File: HenonAttractor.py From EchoTorch with GNU General Public License v3.0 | 5 votes |
def __init__(self, sample_len, n_samples, xy, a, b, washout=0, normalize=False, seed=None): """ Constructor :param sample_len: Length of the time-series in time steps. :param n_samples: Number of samples to generate. :param a: :param b: :param c: """ # Properties self.sample_len = sample_len self.n_samples = n_samples self.a = a self.b = b self.xy = xy self.normalize = normalize self.washout = washout # Seed if seed is not None: torch.initial_seed(seed) # end if # Generate data set self.outputs = self._generate() # end __init__ ############################################# # OVERRIDE ############################################# # Length
Example #4
Source File: LorenzAttractor.py From EchoTorch with GNU General Public License v3.0 | 5 votes |
def __init__(self, sample_len, n_samples, xyz, sigma, b, r, dt=0.01, washout=0, normalize=False, seed=None): """ Constructor :param sample_len: Length of the time-series in time steps. :param n_samples: Number of samples to generate. :param a: :param b: :param c: """ # Properties self.sample_len = sample_len self.n_samples = n_samples self.xyz = xyz self.dt = dt self.normalize = normalize self.washout = washout self.sigma = sigma self.b = b self.r = r # Seed if seed is not None: torch.initial_seed(seed) # end if # Generate data set self.outputs = self._generate() # end __init__ ############################################# # OVERRIDE ############################################# # Length
Example #5
Source File: __init__.py From torchfunc with MIT License | 5 votes |
def __init__(self, value, cuda: bool = False): self.value = value self.cuda = cuda self._last_seed = torch.initial_seed() np.random.seed(self.value) torch.manual_seed(self.value) if self.cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False
Example #6
Source File: torchfunc_test.py From torchfunc with MIT License | 5 votes |
def test_seed_decorator(): first_seed = torch.initial_seed() @torchfunc.seed(0) def wrapped(): assert 0 == torch.initial_seed() wrapped() assert torch.initial_seed() == first_seed
Example #7
Source File: torchfunc_test.py From torchfunc with MIT License | 5 votes |
def test_seed_context_manager(): first_seed = torch.initial_seed() with torchfunc.seed(0): assert 0 == torch.initial_seed() assert torch.initial_seed() == first_seed
Example #8
Source File: torchfunc_test.py From torchfunc with MIT License | 5 votes |
def test_seed(): torchfunc.seed(0) assert 0 == torch.initial_seed()
Example #9
Source File: utils.py From 3D-ResNets-PyTorch with MIT License | 5 votes |
def worker_init_fn(worker_id): torch_seed = torch.initial_seed() random.seed(torch_seed + worker_id) if torch_seed >= 2**32: torch_seed = torch_seed % 2**32 np.random.seed(torch_seed + worker_id)
Example #10
Source File: trainer.py From elektronn3 with MIT License | 5 votes |
def _worker_init_fn(worker_id: int) -> None: """Sets a unique but deterministic random seed for background workers. Only sets the seed for NumPy because PyTorch and Python's own RNGs take care of reseeding on their own. See https://github.com/numpy/numpy/issues/9650.""" # Modulo 2**32 because np.random.seed() only accepts values up to 2**32 - 1 initial_seed = torch.initial_seed() % 2**32 worker_seed = initial_seed + worker_id np.random.seed(worker_seed) # Be careful from where you call this! Not sure if this is concurrency-safe.
Example #11
Source File: datasets.py From PointFlow with MIT License | 5 votes |
def init_np_seed(worker_id): seed = torch.initial_seed() np.random.seed(seed % 4294967296)
Example #12
Source File: __init__.py From margipose with Apache License 2.0 | 5 votes |
def worker_init(worker_id): seed_all(torch.initial_seed() % 2**32)
Example #13
Source File: main_fullv_gpd.py From PointNetGPD with MIT License | 5 votes |
def worker_init_fn(pid): np.random.seed(torch.initial_seed() % (2**31-1))
Example #14
Source File: main_fullv.py From PointNetGPD with MIT License | 5 votes |
def worker_init_fn(pid): np.random.seed(torch.initial_seed() % (2**31-1))
Example #15
Source File: main_1v_gpd.py From PointNetGPD with MIT License | 5 votes |
def worker_init_fn(pid): np.random.seed(torch.initial_seed() % (2**31-1))
Example #16
Source File: main_fullv_mc.py From PointNetGPD with MIT License | 5 votes |
def worker_init_fn(pid): np.random.seed(torch.initial_seed() % (2**31-1))
Example #17
Source File: main_1v.py From PointNetGPD with MIT License | 5 votes |
def worker_init_fn(pid): np.random.seed(torch.initial_seed() % (2**31-1))
Example #18
Source File: common.py From adviser with GNU General Public License v3.0 | 4 votes |
def init_random(seed: int = None): """ Initializes the random generators to allow seeding. Args: seed (int): The seed used for all random generators. """ global GLOBAL_SEED # pylint: disable=global-statement if GLOBAL_SEED is not None: return if seed is None: tmp_random = numpy.random.RandomState(None) GLOBAL_SEED = tmp_random.randint(2**32-1, dtype='uint32') else: GLOBAL_SEED = seed # initialize random generators numpy.random.seed(GLOBAL_SEED) random.seed(GLOBAL_SEED) try: # try to load torch and initialize random generator if available import torch torch.cuda.manual_seed_all(GLOBAL_SEED) # gpu torch.manual_seed(GLOBAL_SEED) # cpu except ImportError: pass try: # try to load tensorflow and initialize random generator if available import tensorflow tensorflow.random.set_random_seed(GLOBAL_SEED) except ImportError: pass # check whether all calls to torch.* use the same random generator (i.e. same instance) # works in a short test -- MS # print(torch.initial_seed()) # logger.info("Seed is {:d}".format(GLOBAL_SEED)) return GLOBAL_SEED