Python torch.get_rng_state() Examples
The following are 30
code examples of torch.get_rng_state().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch
, or try the search function
.
Example #1
Source File: runner.py From skeltorch with MIT License | 7 votes |
def save_states(self): """Saves the states inside a checkpoint associated with ``epoch``.""" checkpoint_data = dict() if isinstance(self.model, torch.nn.DataParallel): checkpoint_data['model'] = self.model.module.state_dict() else: checkpoint_data['model'] = self.model.state_dict() checkpoint_data['optimizer'] = self.optimizer.state_dict() checkpoint_data['random_states'] = ( random.getstate(), np.random.get_state(), torch.get_rng_state(), torch.cuda.get_rng_state() if torch.cuda.is_available() else None ) checkpoint_data['counters'] = self.counters checkpoint_data['losses_epoch'] = self.losses_epoch checkpoint_data['losses_it'] = self.losses_it checkpoint_data.update(self.save_states_others()) self.experiment.checkpoint_save(checkpoint_data, self.counters['epoch'])
Example #2
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 7 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #3
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #4
Source File: test_inv_quad.py From gpytorch with MIT License | 6 votes |
def setUp(self): if os.getenv("unlock_seed") is None or os.getenv("unlock_seed").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(1) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1) random.seed(1) mats = torch.randn(5, 4, 4) mats = mats @ mats.transpose(-1, -2) mats.div_(5).add_(torch.eye(4).unsqueeze_(0)) vecs = torch.randn(5, 4, 6) self.mats = mats.detach().clone().requires_grad_(True) self.mats_clone = mats.detach().clone().requires_grad_(True) self.vecs = vecs.detach().clone().requires_grad_(True) self.vecs_clone = vecs.detach().clone().requires_grad_(True)
Example #5
Source File: test_inv_quad.py From gpytorch with MIT License | 6 votes |
def setUp(self): if os.getenv("unlock_seed") is None or os.getenv("unlock_seed").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0) mats = torch.randn(2, 3, 4, 4) mats = mats @ mats.transpose(-1, -2) mats.div_(5).add_(torch.eye(4).view(1, 1, 4, 4)) vecs = torch.randn(2, 3, 4, 6) self.mats = mats.detach().clone().requires_grad_(True) self.mats_clone = mats.detach().clone().requires_grad_(True) self.vecs = vecs.detach().clone().requires_grad_(True) self.vecs_clone = vecs.detach().clone().requires_grad_(True)
Example #6
Source File: test_revop.py From memcnn with MIT License | 6 votes |
def test_get_set_device_states(device, enabled): shape = (1, 1, 10, 10) if not torch.cuda.is_available() and device == 'cuda': pytest.skip('This test requires a GPU to be available') X = torch.ones(shape, device=device) devices, states = get_device_states(X) assert len(states) == (1 if device == 'cuda' else 0) assert len(devices) == (1 if device == 'cuda' else 0) cpu_rng_state = torch.get_rng_state() Y = X * torch.rand(shape, device=device) with torch.random.fork_rng(devices=devices, enabled=True): if enabled: if device == 'cpu': torch.set_rng_state(cpu_rng_state) else: set_device_states(devices=devices, states=states) Y2 = X * torch.rand(shape, device=device) assert torch.equal(Y, Y2) == enabled
Example #7
Source File: fgtrain.py From nni with MIT License | 6 votes |
def get_checkpoint(S, stop_conds, rng=None, get_state=True): """ Save the necessary information into a dictionary """ m = {} m['ninitfeats'] = S.ninitfeats m['x0'] = S.x0 x = S.x.clone().cpu().detach() m['feats'] = np.where(x.numpy() >= 0)[0] m.update({k: v[0] for k, v in stop_conds.items()}) if get_state: m.update({constants.Checkpoint.MODEL: S.state_dict(), constants.Checkpoint.OPT: S.opt_train.state_dict(), constants.Checkpoint.RNG: torch.get_rng_state(), }) if rng: m.update({'rng_state': rng.get_state()}) return m
Example #8
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #9
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #10
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #11
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #12
Source File: checkpoint.py From torchgpipe with Apache License 2.0 | 6 votes |
def save_rng_states(device: torch.device, rng_states: Deque[RNGStates], ) -> None: """:meth:`Checkpoint.forward` captures the current PyTorch's random number generator states at CPU and GPU to reuse in :meth:`Recompute.backward`. .. seealso:: :ref:`Referential Transparency` """ cpu_rng_state = torch.get_rng_state() gpu_rng_state: Optional[ByteTensor] if device.type == 'cuda': gpu_rng_state = torch.cuda.get_rng_state(device) else: gpu_rng_state = None rng_states.append((cpu_rng_state, gpu_rng_state))
Example #13
Source File: base_model.py From memory-augmented-self-play with MIT License | 6 votes |
def save_model(self, epochs=-1, optimisers=None, save_dir=None, name=ALICE, timestamp=None): ''' Method to persist the model ''' if not timestamp: timestamp = str(int(time())) state = { EPOCHS: epochs + 1, STATE_DICT: self.state_dict(), OPTIMISER: [optimiser.state_dict() for optimiser in optimisers], NP_RANDOM_STATE: np.random.get_state(), PYTHON_RANDOM_STATE: random.getstate(), PYTORCH_RANDOM_STATE: torch.get_rng_state() } path = os.path.join(save_dir, name + "_model_timestamp_" + timestamp + ".tar") torch.save(state, path) print("saved model to path = {}".format(path))
Example #14
Source File: fakedata.py From Global-Second-order-Pooling-Convolutional-Networks with MIT License | 6 votes |
def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # create random image that is consistent with the index id rng_state = torch.get_rng_state() torch.manual_seed(index + self.random_offset) img = torch.randn(*self.image_size) target = torch.Tensor(1).random_(0, self.num_classes)[0] torch.set_rng_state(rng_state) # convert to PIL Image img = transforms.ToPILImage()(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target
Example #15
Source File: base_policy.py From memory-augmented-self-play with MIT License | 6 votes |
def save_model(self, epochs=-1, optimisers=None, save_dir=None, name=ALICE, timestamp=None): ''' Method to persist the model ''' if not timestamp: timestamp = str(int(time())) state = { EPOCHS: epochs + 1, STATE_DICT: self.state_dict(), OPTIMISER: [optimiser.state_dict() for optimiser in optimisers], NP_RANDOM_STATE: np.random.get_state(), PYTHON_RANDOM_STATE: random.getstate(), PYTORCH_RANDOM_STATE: torch.get_rng_state() } path = os.path.join(save_dir, name + "_model_timestamp_" + timestamp + ".tar") torch.save(state, path) print("saved model to path = {}".format(path))
Example #16
Source File: test_batch_multitask_gp_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #17
Source File: test_sgpr_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #18
Source File: test_independent_multitask_gp_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #19
Source File: test_simple_gp_classification.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) random.seed(0)
Example #20
Source File: base_test_case.py From gpytorch with MIT License | 5 votes |
def setUp(self): if hasattr(self.__class__, "seed"): seed = self.__class__.seed if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) random.seed(seed)
Example #21
Source File: test_kissgp_dkl_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #22
Source File: test_white_noise_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(1) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1) random.seed(1)
Example #23
Source File: test_kissgp_gp_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #24
Source File: test_kissgp_additive_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(1) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1) random.seed(1)
Example #25
Source File: test_kissgp_white_noise_regression.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #26
Source File: test_quadrature.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(1) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1) random.seed(1)
Example #27
Source File: test_pivoted_cholesky.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #28
Source File: test_pivoted_cholesky.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #29
Source File: test_pivoted_cholesky.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)
Example #30
Source File: test_general_multitask_gaussian_likelihood.py From gpytorch with MIT License | 5 votes |
def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0)