Python torch.div() Examples

The following are 30 code examples of torch.div(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch , or try the search function .
Example #1
Source File: data_utils.py    From LearnTrajDep with MIT License 6 votes vote down vote up
def rotmat2quat_torch(R):
    """
    Converts a rotation matrix to quaternion
    batch pytorch version ported from the corresponding numpy method above
    :param R: N * 3 * 3
    :return: N * 4
    """
    rotdiff = R - R.transpose(1, 2)
    r = torch.zeros_like(rotdiff[:, 0])
    r[:, 0] = -rotdiff[:, 1, 2]
    r[:, 1] = rotdiff[:, 0, 2]
    r[:, 2] = -rotdiff[:, 0, 1]
    r_norm = torch.norm(r, dim=1)
    sintheta = r_norm / 2
    r0 = torch.div(r, r_norm.unsqueeze(1).repeat(1, 3) + 0.00000001)
    t1 = R[:, 0, 0]
    t2 = R[:, 1, 1]
    t3 = R[:, 2, 2]
    costheta = (t1 + t2 + t3 - 1) / 2
    theta = torch.atan2(sintheta, costheta)
    q = Variable(torch.zeros(R.shape[0], 4)).float().cuda()
    q[:, 0] = torch.cos(theta / 2)
    q[:, 1:] = torch.mul(r0, torch.sin(theta / 2).unsqueeze(1).repeat(1, 3))

    return q 
Example #2
Source File: resnet.py    From cgnl-network.pytorch with MIT License 6 votes vote down vote up
def kernel(self, t, p, g, b, c, h, w):
        """The linear kernel (dot production).

        Args:
            t: output of conv theata
            p: output of conv phi
            g: output of conv g
            b: batch size
            c: channels number
            h: height of featuremaps
            w: width of featuremaps
        """
        t = t.view(b, 1, c * h * w)
        p = p.view(b, 1, c * h * w)
        g = g.view(b, c * h * w, 1)

        att = torch.bmm(p, g)

        if self.use_scale:
            att = att.div((c*h*w)**0.5)

        x = torch.bmm(att, t)
        x = x.view(b, c, h, w)

        return x 
Example #3
Source File: data_utils.py    From LearnTrajDep with MIT License 6 votes vote down vote up
def expmap2rotmat_torch(r):
    """
    Converts expmap matrix to rotation
    batch pytorch version ported from the corresponding method above
    :param r: N*3
    :return: N*3*3
    """
    theta = torch.norm(r, 2, 1)
    r0 = torch.div(r, theta.unsqueeze(1).repeat(1, 3) + 0.0000001)
    r1 = torch.zeros_like(r0).repeat(1, 3)
    r1[:, 1] = -r0[:, 2]
    r1[:, 2] = r0[:, 1]
    r1[:, 5] = -r0[:, 0]
    r1 = r1.view(-1, 3, 3)
    r1 = r1 - r1.transpose(1, 2)
    n = r1.data.shape[0]
    R = Variable(torch.eye(3, 3).repeat(n, 1, 1)).float().cuda() + torch.mul(
        torch.sin(theta).unsqueeze(1).repeat(1, 9).view(-1, 3, 3), r1) + torch.mul(
        (1 - torch.cos(theta).unsqueeze(1).repeat(1, 9).view(-1, 3, 3)), torch.matmul(r1, r1))
    return R 
Example #4
Source File: recurrent.py    From Tagger with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def top_k_softmax(logits, k, n):
        top_logits, top_indices = torch.topk(logits, k=min(k + 1, n))

        top_k_logits = top_logits[:, :k]
        top_k_indices = top_indices[:, :k]

        probs = torch.softmax(top_k_logits, dim=-1)
        batch = top_k_logits.shape[0]
        k = top_k_logits.shape[1]

        # Flat to 1D
        indices_flat = torch.reshape(top_k_indices, [-1])
        indices_flat = indices_flat + torch.div(
            torch.arange(batch * k, device=logits.device), k) * n

        tensor = torch.zeros([batch * n], dtype=logits.dtype,
                             device=logits.device)
        tensor = tensor.scatter_add(0, indices_flat.long(),
                                    torch.reshape(probs, [-1]))

        return torch.reshape(tensor, [batch, n]) 
Example #5
Source File: competing_completed.py    From translate with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def select_next_words(
        self, word_scores, bsz, beam_size, possible_translation_tokens
    ):
        cand_scores, cand_indices = torch.topk(word_scores.view(bsz, -1), k=beam_size)
        possible_tokens_size = self.vocab_size
        if possible_translation_tokens is not None:
            possible_tokens_size = possible_translation_tokens.size(0)
        cand_beams = torch.div(cand_indices, possible_tokens_size)
        cand_indices.fmod_(possible_tokens_size)
        # Handle vocab reduction
        if possible_translation_tokens is not None:
            possible_translation_tokens = possible_translation_tokens.view(
                1, possible_tokens_size
            ).expand(cand_indices.size(0), possible_tokens_size)
            cand_indices = torch.gather(
                possible_translation_tokens, dim=1, index=cand_indices, out=cand_indices
            )
        return cand_scores, cand_indices, cand_beams 
Example #6
Source File: loss.py    From weakalign with MIT License 6 votes vote down vote up
def forward(self, theta_aff, theta_aff_tps, matches,return_outliers=False):
        batch_size=theta_aff.size()[0]
        mask = self.compGeometricTnf(image_batch=expand_dim(self.mask_id,0,batch_size),
                                     theta_aff=theta_aff,
                                     theta_aff_tps=theta_aff_tps)
        if return_outliers:
             mask_outliers = self.compGeometricTnf(image_batch=expand_dim(1.0-self.mask_id,0,batch_size),
                                                   theta_aff=theta_aff,
                                                   theta_aff_tps=theta_aff_tps)
        if self.normalize:
            epsilon=1e-5
            mask = torch.div(mask,
                             torch.sum(torch.sum(torch.sum(mask+epsilon,3),2),1).unsqueeze(1).unsqueeze(2).unsqueeze(3).expand_as(mask))
            if return_outliers:
                mask_outliers = torch.div(mask,
                             torch.sum(torch.sum(torch.sum(mask_outliers+epsilon,3),2),1).unsqueeze(1).unsqueeze(2).unsqueeze(3).expand_as(mask_outliers)) 
        score = torch.sum(torch.sum(torch.sum(torch.mul(mask,matches),3),2),1)

        if return_outliers:
            score_outliers = torch.sum(torch.sum(torch.sum(torch.mul(mask_outliers,matches),3),2),1)
            return (score,score_outliers)
        return score 
Example #7
Source File: seq2seq_atten.py    From video_captioning_rl with MIT License 6 votes vote down vote up
def forward(self, dec_state, enc_states, mask, dag=None):
        """
        :param dec_state: 
            decoder hidden state of size batch_size x dec_dim
        :param enc_states:
            all encoder hidden states of size batch_size x max_enc_steps x enc_dim
        :param flengths:
            encoder video frame lengths of size batch_size
        """
        dec_contrib = self.decoder_in(dec_state)
        batch_size, max_enc_steps, _  = enc_states.size()
        enc_contrib = self.encoder_in(enc_states.contiguous().view(-1, self.enc_dim)).contiguous().view(batch_size, max_enc_steps, self.attn_dim)
        pre_attn = F.tanh(enc_contrib + dec_contrib.unsqueeze(1).expand_as(enc_contrib))
       
        
        energy = self.attn_linear(pre_attn.view(-1, self.attn_dim)).view(batch_size, max_enc_steps)
        alpha = F.softmax(energy, 1)
        # mask alpha and renormalize it
        alpha = alpha* mask
        alpha = torch.div(alpha, alpha.sum(1).unsqueeze(1).expand_as(alpha))

        context_vector = torch.bmm(alpha.unsqueeze(1), enc_states).squeeze(1) # (batch_size, enc_dim)

        return context_vector, alpha 
Example #8
Source File: transform_cnn.py    From View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition with MIT License 6 votes vote down vote up
def _transform(x, mat, maxmin):
    rot = mat[:,0:3]
    trans = mat[:,3:6]

    x = x.contiguous().view(-1, x.size()[1] , x.size()[2] * x.size()[3])

    max_val, min_val = maxmin[:,0], maxmin[:,1]
    max_val, min_val = max_val.contiguous().view(-1,1), min_val.contiguous().view(-1,1)
    max_val, min_val = max_val.repeat(1,3), min_val.repeat(1,3)
    trans, rot = _trans_rot(trans, rot)

    x1 = torch.matmul(rot,x)
    min_val1 = torch.cat((min_val, Variable(min_val.data.new(min_val.size()[0], 1).fill_(1))), dim=-1)
    min_val1 = min_val1.unsqueeze(-1)
    min_val1 = torch.matmul(trans, min_val1)

    min_val = torch.div( torch.add(torch.matmul(rot, min_val1).squeeze(-1), - min_val), torch.add(max_val, - min_val))

    min_val = min_val.mul_(255)
    x = torch.add(x1, min_val.unsqueeze(-1))

    x = x.contiguous().view(-1,3, 224,224)

    return x 
Example #9
Source File: char_encoder.py    From translate with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _load_projection(self):
        """
        Function to load the weights associated with the pretrained projection
        layer. In order to ensure the norm of the weights match up with the
        rest of the model, we need to normalize the pretrained weights.
        Here we divide by a fixed constant.
        """
        input_dim = self.filter_dims

        self.projection = nn.Linear(input_dim, self.char_cnn_output_dim, bias=True)
        weight = self.npz_weights["W_proj"]
        bias = self.npz_weights["b_proj"]
        self.projection.weight.data.copy_(
            torch.div(torch.FloatTensor(np.transpose(weight)), 10.0)
        )
        self.projection.bias.data.copy_(
            torch.div(torch.FloatTensor(np.transpose(bias)), 10.0)
        )

        self.projection.weight.requires_grad = self._finetune_pretrained_weights
        self.projection.bias.requires_grad = self._finetune_pretrained_weights 
Example #10
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_W_poisson_L2(H,W,lambda_,phi,V,eps_):
    # beta = 1 zeta(beta) = 1/2
    V_ap = torch.matmul(W,H) + eps_
    V_res = torch.div(V, V_ap)
    denom = torch.sum(H,1) + torch.div(phi*W,lambda_) + eps_
    update = torch.pow(torch.div(torch.matmul(V_res,H.transpose(0,1)),denom),0.5)
    return W * update 
Example #11
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_del(lambda_, lambda_last):
    del_ = torch.max(torch.div(torch.abs(lambda_ - lambda_last)), lambda_last)
    return del_ 
Example #12
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_H_gaussian_L2(H,W,lambda_,phi,V,eps_):
    #beta = 2 zeta(beta) = 1
    denom = torch.matmul(W.transpose(0,1).type(V.dtype),torch.matmul(W, H).type(V.dtype) + eps_) + torch.div(phi * H, lambda_.reshape(-1,1)).type(V.dtype) + eps_
    update = torch.div(torch.matmul(W.transpose(0,1).type(V.dtype),V),denom)
    return H * update.type(torch.float32) 
Example #13
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_H_gaussian_L1(H,W,lambda_,phi,V,eps_):
    #beta = 2 gamma(beta) = 1
    V_ap = torch.matmul(W, H) + eps_
    denom = torch.matmul(W.transpose(0,1),V_ap) + torch.div(phi, lambda_ ).reshape(-1,1) + eps_
    update = torch.div(torch.matmul(W.transpose(0,1),V),denom)
    return H * update 
Example #14
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_W_gaussian_L1(H,W,lambda_,phi,V,eps_):
    #beta = 2 gamma(beta) = 1
    V_ap = torch.matmul(W,H).type(V.dtype) + eps_
    denom = torch.matmul(V_ap,H.transpose(0,1).type(V.dtype)) + torch.div(phi,lambda_).type(V.dtype) + eps_
    update = torch.div(torch.matmul(V,H.transpose(0,1).type(V.dtype)),denom)
    return W * update.type(torch.float32) 
Example #15
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_W_gaussian_L2(H,W,lambda_,phi,V,eps_):
    #beta = 2 zeta(beta) = 1
    V_ap = torch.matmul(W,H) + eps_
    denom = torch.matmul(V_ap,H.transpose(0,1)) + torch.div(phi*W,lambda_) + eps_
    update = torch.div(torch.matmul(V,H.transpose(0,1)),denom)
    return W * update

# update tolerance value for early stop criteria 
Example #16
Source File: NMF_functions.py    From SignatureAnalyzer-GPU with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def update_lambda_L1_L2(W,H,b0,C,eps_):
    return torch.div(torch.sum(W,0) + 0.5*torch.sum(H*H,1)+b0,C) 
Example #17
Source File: model.py    From VSE-C with MIT License 5 votes vote down vote up
def l2norm(X):
    """L2-normalize columns of X
    """
    norm = torch.pow(X, 2).sum(dim=1).sqrt().view(X.size(0), -1)
    X = torch.div(X, norm.expand_as(X))
    return X 
Example #18
Source File: utils.py    From context_encoder_pytorch with MIT License 5 votes vote down vote up
def normalize_batch(batch):
    # normalize using imagenet mean and std
    mean = batch.data.new(batch.data.size())
    std = batch.data.new(batch.data.size())
    mean[:, 0, :, :] = 0.485
    mean[:, 1, :, :] = 0.456
    mean[:, 2, :, :] = 0.406
    std[:, 0, :, :] = 0.229
    std[:, 1, :, :] = 0.224
    std[:, 2, :, :] = 0.225
    batch = torch.div(batch, 255.0)
    batch -= Variable(mean)
    # batch /= Variable(std)
    batch = torch.div(batch,Variable(std))
    return batch 
Example #19
Source File: model.py    From SCAN with Apache License 2.0 5 votes vote down vote up
def l2norm(X, dim, eps=1e-8):
    """L2-normalize columns of X
    """
    norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
    X = torch.div(X, norm)
    return X 
Example #20
Source File: model.py    From SCAN with Apache License 2.0 5 votes vote down vote up
def l1norm(X, dim, eps=1e-8):
    """L1-normalize columns of X
    """
    norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
    X = torch.div(X, norm)
    return X 
Example #21
Source File: model.py    From dual_encoding with Apache License 2.0 5 votes vote down vote up
def l2norm(X):
    """L2-normalize columns of X
    """
    norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
    X = torch.div(X, norm)
    return X 
Example #22
Source File: networks.py    From viton-gan with MIT License 5 votes vote down vote up
def forward(self, feature):
        epsilon = 1e-6
        norm = torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature,norm) 
Example #23
Source File: test_precision.py    From PySyft with Apache License 2.0 5 votes vote down vote up
def test_torch_div(workers):
    bob, alice, james = (workers["bob"], workers["alice"], workers["james"])

    # With scalar
    x = torch.tensor([[9.0, 25.42], [3.3, 0.0]]).fix_prec()
    y = torch.tensor([[3.0, 6.2], [3.3, 4.7]]).fix_prec()

    z = torch.div(x, y).float_prec()

    assert (z == torch.tensor([[3.0, 4.1], [1.0, 0.0]])).all()

    # With negative numbers
    x = torch.tensor([[-9.0, 25.42], [-3.3, 0.0]]).fix_prec()
    y = torch.tensor([[3.0, -6.2], [-3.3, 4.7]]).fix_prec()

    z = torch.div(x, y).float_prec()

    assert (z == torch.tensor([[-3.0, -4.1], [1.0, 0.0]])).all()

    # AST divided by FPT
    x = torch.tensor([[9.0, 25.42], [3.3, 0.0]]).fix_prec().share(bob, alice, crypto_provider=james)
    y = torch.tensor([[3.0, 6.2], [3.3, 4.7]]).fix_prec()

    z = torch.div(x, y).get().float_prec()

    assert (z == torch.tensor([[3.0, 4.1], [1.0, 0.0]])).all()

    # With dtype int
    x = torch.tensor([[-9.0, 25.42], [-3.3, 0.0]]).fix_prec(dtype="int")
    y = torch.tensor([[3.0, -6.2], [-3.3, 4.7]]).fix_prec(dtype="int")

    z = torch.div(x, y)
    assert (z.float_prec() == torch.tensor([[-3.0, -4.1], [1.0, 0.0]])).all() 
Example #24
Source File: final_classifier.py    From CADA-VAE-PyTorch with MIT License 5 votes vote down vote up
def compute_per_class_acc(self, test_label, predicted_label, nclass):

        per_class_accuracies = torch.zeros(nclass).float().to(self.device).detach()

        target_classes = torch.arange(0, nclass, out=torch.LongTensor()).to(self.device) #changed from 200 to nclass on 24.06.
        predicted_label = predicted_label.to(self.device)
        test_label = test_label.to(self.device)

        for i in range(nclass):

            is_class = test_label==target_classes[i]

            per_class_accuracies[i] = torch.div((predicted_label[is_class]==test_label[is_class]).sum().float(),is_class.sum().float())

        return per_class_accuracies.mean() 
Example #25
Source File: final_classifier.py    From CADA-VAE-PyTorch with MIT License 5 votes vote down vote up
def compute_per_class_acc_gzsl(self, test_label, predicted_label, target_classes):

        per_class_accuracies = Variable(torch.zeros(target_classes.size()[0]).float().to(self.device)).detach()

        predicted_label = predicted_label.to(self.device)

        for i in range(target_classes.size()[0]):

            is_class = test_label==target_classes[i]

            per_class_accuracies[i] = torch.div((predicted_label[is_class]==test_label[is_class]).sum().float(),is_class.sum().float())

        return per_class_accuracies.mean() 
Example #26
Source File: utils.py    From visDial.pytorch with MIT License 5 votes vote down vote up
def l2_norm(input):
    """
    input: feature that need to normalize.
    output: normalziaed feature.
    """
    input_size = input.size()
    buffer = torch.pow(input, 2)

    normp = torch.sum(buffer, 1).add_(1e-10)
    norm = torch.sqrt(normp)
    _output = torch.div(input, norm.view(-1, 1).expand_as(input))
    output = _output.view(input_size)

    return output 
Example #27
Source File: SpectralNormLayer.py    From cortex with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def sn_weight(weight, u, height, n_power_iterations):
    weight.requires_grad_(False)
    for _ in range(n_power_iterations):
        v = l2normalize(torch.mv(weight.view(height, -1).t(), u))
        u = l2normalize(torch.mv(weight.view(height, -1), v))

    weight.requires_grad_(True)
    sigma = u.dot(weight.view(height, -1).mv(v))
    return torch.div(weight, sigma), u 
Example #28
Source File: utils.py    From deep-head-pose with Apache License 2.0 5 votes vote down vote up
def softmax_temperature(tensor, temperature):
    result = torch.exp(tensor / temperature)
    result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result))
    return result 
Example #29
Source File: resnet.py    From cgnl-network.pytorch with MIT License 5 votes vote down vote up
def forward(self, x):
        residual = x

        t = self.t(x)
        p = self.p(x)
        g = self.g(x)

        b, c, h, w = t.size()

        t = t.view(b, c, -1).permute(0, 2, 1)
        p = p.view(b, c, -1)
        g = g.view(b, c, -1).permute(0, 2, 1)

        att = torch.bmm(t, p)

        if self.use_scale:
            att = att.div(c**0.5)

        att = self.softmax(att)
        x = torch.bmm(att, g)

        x = x.permute(0, 2, 1)
        x = x.contiguous()
        x = x.view(b, c, h, w)

        x = self.z(x)
        x = self.bn(x) + residual

        return x 
Example #30
Source File: resnet.py    From cgnl-network.pytorch with MIT License 5 votes vote down vote up
def forward(self, x):
        residual = x

        t = self.t(x)
        p = self.p(x)
        g = self.g(x)

        b, c, h, w = t.size()

        t = t.view(b, c, -1).permute(0, 2, 1)
        p = p.view(b, c, -1)
        g = g.view(b, c, -1).permute(0, 2, 1)

        att = torch.bmm(t, p)

        if self.use_scale:
            att = att.div(c**0.5)

        att = self.softmax(att)
        x = torch.bmm(att, g)

        x = x.permute(0, 2, 1)
        x = x.contiguous()
        x = x.view(b, c, h, w)

        x = self.z(x)
        x = self.bn(x) + residual

        return x