Python torch.from_numpy() Examples

The following are 30 code examples of torch.from_numpy(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch , or try the search function .
Example #1
Source File: utils.py    From pruning_yolov3 with GNU General Public License v3.0 8 votes vote down vote up
def plot_wh_methods():  # from utils.utils import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), dpi=150)
    plt.plot(x, ya, '.-', label='yolo method')
    plt.plot(x, yb ** 2, '.-', label='^2 power method')
    plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.legend()
    fig.tight_layout()
    fig.savefig('comparison.png', dpi=200) 
Example #2
Source File: models.py    From cvpr2018-hnd with MIT License 7 votes vote down vote up
def __init__(self, T, opts):
        super(LOOLoss, self).__init__()
        
        self.gpu = opts.gpu
        self.loo = opts.loo if 'LOO' in opts.method else 0.
        self.label_smooth = opts.label_smooth
        self.kld_u_const = math.log(len(T['wnids']))
        self.relevant = [torch.from_numpy(rel) for rel in T['relevant']]
        self.labels_relevant = torch.from_numpy(T['labels_relevant'].astype(np.uint8))
        ch_slice = T['ch_slice']
        if opts.class_wise:
            num_children = T['num_children']
            num_supers = len(num_children)
            self.class_weight = torch.zeros(ch_slice[-1])
            for m, num_ch in enumerate(num_children):
                self.class_weight[ch_slice[m]:ch_slice[m+1]] = 1. / (num_ch * num_supers)
        else:
            self.class_weight = torch.ones(ch_slice[-1]) / ch_slice[-1] 
Example #3
Source File: transforms.py    From ACAN with MIT License 6 votes vote down vote up
def __call__(self, img):
        """Convert a ``numpy.ndarray`` to tensor.

        Args:
            img (numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        if not(_is_numpy_image(img)):
            raise TypeError('img should be ndarray. Got {}'.format(type(img)))

        if isinstance(img, np.ndarray):
            # handle numpy array
            if img.ndim == 3:
                img = torch.from_numpy(img.transpose((2, 0, 1)).copy())
            elif img.ndim == 2:
                img = torch.from_numpy(img.copy())
            else:
                raise RuntimeError('img should be ndarray with 2 or 3 dimensions. Got {}'.format(img.ndim))

            # backward compatibility
            #return img.float().div(255)
            return img.float() 
Example #4
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __getitem__(self, index):

        img=self.adv_flat[self.sample_num,:]

        if(self.shuff == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(3,224,224)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = self.adv_dict["adv_labels"][self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        self.sample_num = self.sample_num + 1
        return img, target 
Example #5
Source File: maskiou_head.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks):
        """Compute area ratio of the gt mask inside the proposal and the gt
        mask of the corresponding instance."""
        num_pos = pos_proposals.size(0)
        if num_pos > 0:
            area_ratios = []
            proposals_np = pos_proposals.cpu().numpy()
            pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
            # compute mask areas of gt instances (batch processing for speedup)
            gt_instance_mask_area = gt_masks.areas
            for i in range(num_pos):
                gt_mask = gt_masks[pos_assigned_gt_inds[i]]

                # crop the gt mask inside the proposal
                bbox = proposals_np[i, :].astype(np.int32)
                gt_mask_in_proposal = gt_mask.crop(bbox)

                ratio = gt_mask_in_proposal.areas[0] / (
                    gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7)
                area_ratios.append(ratio)
            area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to(
                pos_proposals.device)
        else:
            area_ratios = pos_proposals.new_zeros((0, ))
        return area_ratios 
Example #6
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __getitem__(self, index):

        img=self.adv_flat[self.sample_num,:]

        if(self.shuff == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(3,32,32)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = np.argmax(self.adv_dict["adv_labels"],axis=1)[self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        self.sample_num = self.sample_num + 1
        return img, target 
Example #7
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __getitem__(self, index):

        img=self.adv_flat[self.sample_num,:]

        if(self.shuff == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(3,32,32)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = np.argmax(self.adv_dict["adv_labels"],axis=1)[self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        self.sample_num = self.sample_num + 1
        return img, target 
Example #8
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __getitem__(self, index):
        img=self.adv_flat[self.sample_num,:]
        if(self.transp == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(28,28)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = np.argmax(self.adv_dict["adv_labels"],axis=1)[self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)
        self.sample_num = self.sample_num + 1
        return img, target 
Example #9
Source File: Embed.py    From pytorch_NER_BiLSTM_CNN_CRF with Apache License 2.0 6 votes vote down vote up
def _zeros_embed(self, embed_dict, words_dict):
        """
        :param embed_dict:
        :param words_dict:
        """
        print("loading pre_train embedding by zeros for out of vocabulary.")
        embeddings = np.zeros((int(self.words_count), int(self.dim)))
        for word in words_dict:
            if word in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word]], dtype='float32')
                self.exact_count += 1
            elif word.lower() in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word.lower()]], dtype='float32')
                self.fuzzy_count += 1
            else:
                self.oov_count += 1
        final_embed = torch.from_numpy(embeddings).float()
        return final_embed 
Example #10
Source File: Embed.py    From pytorch_NER_BiLSTM_CNN_CRF with Apache License 2.0 6 votes vote down vote up
def _nn_embed(self, embed_dict, words_dict):
        """
        :param embed_dict:
        :param words_dict:
        """
        print("loading pre_train embedding by nn.Embedding for out of vocabulary.")
        embed = nn.Embedding(int(self.words_count), int(self.dim))
        init.xavier_uniform_(embed.weight.data)
        embeddings = np.array(embed.weight.data)
        for word in words_dict:
            if word in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word]], dtype='float32')
                self.exact_count += 1
            elif word.lower() in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word.lower()]], dtype='float32')
                self.fuzzy_count += 1
            else:
                self.oov_count += 1
        embeddings[self.padID] = 0
        final_embed = torch.from_numpy(embeddings).float()
        return final_embed 
Example #11
Source File: Embed.py    From pytorch_NER_BiLSTM_CNN_CRF with Apache License 2.0 6 votes vote down vote up
def _uniform_embed(self, embed_dict, words_dict):
        """
        :param embed_dict:
        :param words_dict:
        """
        print("loading pre_train embedding by uniform for out of vocabulary.")
        embeddings = np.zeros((int(self.words_count), int(self.dim)))
        inword_list = {}
        for word in words_dict:
            if word in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word]], dtype='float32')
                inword_list[words_dict[word]] = 1
                self.exact_count += 1
            elif word.lower() in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word.lower()]], dtype='float32')
                inword_list[words_dict[word]] = 1
                self.fuzzy_count += 1
            else:
                self.oov_count += 1
        uniform_col = np.random.uniform(-0.25, 0.25, int(self.dim)).round(6)  # uniform
        for i in range(len(words_dict)):
            if i not in inword_list and i != self.padID:
                embeddings[i] = uniform_col
        final_embed = torch.from_numpy(embeddings).float()
        return final_embed 
Example #12
Source File: Embed.py    From pytorch_NER_BiLSTM_CNN_CRF with Apache License 2.0 6 votes vote down vote up
def _avg_embed(self, embed_dict, words_dict):
        """
        :param embed_dict:
        :param words_dict:
        """
        print("loading pre_train embedding by avg for out of vocabulary.")
        embeddings = np.zeros((int(self.words_count), int(self.dim)))
        inword_list = {}
        for word in words_dict:
            if word in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word]], dtype='float32')
                inword_list[words_dict[word]] = 1
                self.exact_count += 1
            elif word.lower() in embed_dict:
                embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word.lower()]], dtype='float32')
                inword_list[words_dict[word]] = 1
                self.fuzzy_count += 1
            else:
                self.oov_count += 1
        sum_col = np.sum(embeddings, axis=0) / len(inword_list)  # avg
        for i in range(len(words_dict)):
            if i not in inword_list and i != self.padID:
                embeddings[i] = sum_col
        final_embed = torch.from_numpy(embeddings).float()
        return final_embed 
Example #13
Source File: Data.py    From GST-Tacotron with MIT License 6 votes vote down vote up
def get_eval_data(text, wav_path):
    '''
    get data for eval
    --------------
    input:
        text --- pinyin format sequence
    output:
        text --- [1, T_x]
        mel ---  [1, 1, n_mels]
    '''
    text = text_normalize(text) + 'E'
    text = [hp.char2idx[c] for c in text]
    text = torch.Tensor(text).type(torch.LongTensor)  # [T_x]
    text = text.unsqueeze(0)  # [1, T_x]
    mel = torch.zeros(1, 1, hp.n_mels)  # GO frame [1, 1, n_mels]

    _, ref_mels, _ = load_spectrograms(wav_path)
    ref_mels = torch.from_numpy(ref_mels).unsqueeze(0)

    return text, mel, ref_mels 
Example #14
Source File: env_utils.py    From Pytorch-Project-Template with MIT License 6 votes vote down vote up
def get_screen(self, env):
        screen = env.render(mode='rgb_array').transpose((2, 0, 1))  # transpose into torch order (CHW)
        # Strip off the top and bottom of the screen
        screen = screen[:, 160:320]
        view_width = 320
        cart_location = self.get_cart_location(env)
        if cart_location < view_width // 2:
            slice_range = slice(view_width)
        elif cart_location > (self.screen_width - view_width // 2):
            slice_range = slice(-view_width, None)
        else:
            slice_range = slice(cart_location - view_width // 2,
                                cart_location + view_width // 2)
        # Strip off the edges, so that we have a square image centered on a cart
        screen = screen[:, :, slice_range]
        # Convert to float, rescale, convert to torch tensor
        screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
        screen = torch.from_numpy(screen)
        # Resize, and add a batch dimension (BCHW)
        return resize(screen).unsqueeze(0) 
Example #15
Source File: prune_utils.py    From pruning_yolov3 with GNU General Public License v3.0 5 votes vote down vote up
def prune_model_keep_size(model, prune_idx, CBL_idx, CBLidx2mask):

    pruned_model = deepcopy(model)
    for idx in prune_idx:
        mask = torch.from_numpy(CBLidx2mask[idx]).cuda()
        bn_module = pruned_model.module_list[idx][1]

        bn_module.weight.data.mul_(mask)

        activation = F.leaky_relu((1 - mask) * bn_module.bias.data, 0.1)

        # 两个上采样层前的卷积层
        next_idx_list = [idx + 1]
        if idx == 79:
            next_idx_list.append(84)
        elif idx == 91:
            next_idx_list.append(96)

        for next_idx in next_idx_list:
            next_conv = pruned_model.module_list[next_idx][0]
            conv_sum = next_conv.weight.data.sum(dim=(2, 3))
            offset = conv_sum.matmul(activation.reshape(-1, 1)).reshape(-1)
            if next_idx in CBL_idx:
                next_bn = pruned_model.module_list[next_idx][1]
                next_bn.running_mean.data.sub_(offset)
            else:
                next_conv.bias.data.add_(offset)

        bn_module.bias.data.mul_(mask)

    return pruned_model 
Example #16
Source File: util.py    From DeepLab_v3_plus with MIT License 5 votes vote down vote up
def decode_seg_map_sequence(label_masks, dataset='pascal'):
    rgb_masks = []
    for label_mask in label_masks:
        rgb_mask = decode_segmap(label_mask, dataset)
        rgb_masks.append(rgb_mask)
    rgb_masks = torch.from_numpy(np.array(rgb_masks).transpose([0, 3, 1, 2]))
    return rgb_masks 
Example #17
Source File: util.py    From DeepLab_v3_plus with MIT License 5 votes vote down vote up
def cross_entropy2d(logit, target, ignore_index=255, weight=None, size_average=True, batch_average=True):
    """
    logit 是网络输出 (batchsize, 21, 512, 512) 值应该为任意(没经历归一化)
    target是gt      (batchsize,  1, 512, 512) 值应该是背景为0,其他类分别为1-20,忽略为255
    return 经过h*w*batchsize平均的loss
    这里的loss相当于对每个像素点求分类交叉熵
    ignore_index 是指target中有些忽略的(非背景也非目标,是不属于数据集类别的其他物体,不计算loss) 表现为白色
    最后要注意:crossentropy是已经经过softmax,所以网络最后一层不需要处理
    https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss
    """
    n, c, h, w = logit.size()
    # logit = logit.permute(0, 2, 3, 1)
    target = target.squeeze(1)# (batchsize, 1, 512, 512) -> (batchsize, 512, 512)
    if weight is None:
        criterion = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, size_average=False)
    else:
        criterion = nn.CrossEntropyLoss(weight=torch.from_numpy(np.array(weight)).float().cuda(), ignore_index=ignore_index, size_average=False)
    loss = criterion(logit, target.long())

    if size_average:
        loss /= (h * w)

    if batch_average:
        loss /= n

    return loss 
Example #18
Source File: transform.py    From DeepLab_v3_plus with MIT License 5 votes vote down vote up
def __call__(self, sample):
        # swap color axis because
        # numpy image: H x W x C
        # torch image: C X H X W
        img = np.array(sample['image']).astype(np.float32).transpose((2, 0, 1))
        mask = np.expand_dims(np.array(sample['label']).astype(np.float32), -1).transpose((2, 0, 1))
        mask[mask == 255] = 0

        img = torch.from_numpy(img).float()
        mask = torch.from_numpy(mask).float()

        return {'image': img,
                'label': mask} 
Example #19
Source File: utils_test.py    From neural-pipeline with MIT License 5 votes vote down vote up
def test_dict_recursive_bypass(self):
        d = {'data': np.array([1]), 'target': {'a': np.array([1]), 'b': np.array([1])}}
        d = dict_recursive_bypass(d, lambda v: torch.from_numpy(v))

        self.assertTrue(isinstance(d['data'], Tensor))
        self.assertTrue(isinstance(d['target']['a'], Tensor))
        self.assertTrue(isinstance(d['target']['b'], Tensor)) 
Example #20
Source File: img_segmentation.py    From neural-pipeline with MIT License 5 votes vote down vote up
def augmentate_and_to_pytorch(item: {}):
    res = augmentate(item)
    return {'data': torch.from_numpy(np.moveaxis(res['data'].astype(np.float32) / 255., -1, 0)),
            'target': torch.from_numpy(np.expand_dims(res['target'].astype(np.float32) / 255, axis=0))} 
Example #21
Source File: completion_test.py    From VSE-C with MIT License 5 votes vote down vote up
def load_word_embedding(vse):
    checkpoint = torch.load(vse)
    opt = checkpoint['opt']
    vocab = Vocab.from_pickle(pjoin(opt.vocab_path, '%s_vocab.pkl' % opt.data_name))

    if not args.glove_only:
        embed_weights = checkpoint['model'][1]['embed.weight'].cpu().numpy()
        _, glove_weights = io.load('data/snli/glove.pkl')
        embed_weights = np.concatenate((glove_weights, embed_weights), axis=1)
    else:
        _, embed_weights = io.load('data/snli/glove.pkl')
    embedding = nn.Embedding(embed_weights.shape[0], embed_weights.shape[1], padding_idx=0)
    embedding.weight.data.copy_(torch.from_numpy(embed_weights))
    return vocab, embedding 
Example #22
Source File: completion_train.py    From VSE-C with MIT License 5 votes vote down vote up
def load_word_embedding(vse):
    checkpoint = torch.load(vse)
    opt = checkpoint['opt']
    vocab = Vocab.from_pickle(pjoin(opt.vocab_path, '%s_vocab.pkl' % opt.data_name))

    if not args.glove_only:
        embed_weights = checkpoint['model'][1]['embed.weight'].cpu().numpy()
        _, glove_weights = io.load('data/snli/glove.pkl')
        embed_weights = np.concatenate((glove_weights, embed_weights), axis=1)
    else:
        _, embed_weights = io.load('data/snli/glove.pkl')
    embedding = nn.Embedding(embed_weights.shape[0], embed_weights.shape[1], padding_idx=0)
    embedding.weight.data.copy_(torch.from_numpy(embed_weights))
    return vocab, embedding 
Example #23
Source File: network.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def _anchor_component(self, height, width):
    # just to get the shape right
    #height = int(math.ceil(self._im_info.data[0, 0] / self._feat_stride[0]))
    #width = int(math.ceil(self._im_info.data[0, 1] / self._feat_stride[0]))
    anchors, anchor_length = generate_anchors_pre(\
                                          height, width,
                                           self._feat_stride, self._anchor_scales, self._anchor_ratios)
    self._anchors = Variable(torch.from_numpy(anchors).cuda())
    self._anchor_length = anchor_length 
Example #24
Source File: network.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def _generate_pseudo_gtbox(self, fuse_prob, boxes): # Inputs are two variables
      #return gt_boxes Variable(torch.from_numpy(gt_boxes).cuda()) size: gt_num * (x1,y1,x2,y2,class)
    gt_boxes, proposals = generate_pseudo_gtbox(boxes, fuse_prob, self._labels)
    return gt_boxes, proposals 
Example #25
Source File: network.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def forward(self, image, im_info, boxes, labels=None, mode='TRAIN'): #done
    self._image_gt_summaries['image'] = image
    self._image_gt_summaries['boxes'] = boxes
    self._image_gt_summaries['im_info'] = im_info
    self._image_gt_summaries['labels'] = labels
    
    self._image = Variable(torch.from_numpy(image.transpose([0,3,1,2])).cuda(), volatile=mode == 'TEST')
    self._im_info = im_info # No need to change; actually it can be an list
    self._boxes = Variable(torch.from_numpy(boxes).type('torch.Tensor').cuda())
    self._labels = Variable(torch.from_numpy(labels).type('torch.Tensor').cuda()) if labels is not None else None


    self._mode = mode
    '''
       (1) do image -> net_conv 
    '''
    torch.backends.cudnn.benchmark = False
    net_conv = self._image_to_head()

    '''
       (2) do net_conv -> faster-branch 
    '''
    cls_prob_fast, bbox_pred_fast = self._predict_fast(net_conv)
    
    

    if mode == 'TEST':
      if 1:
          '''
              (3) do net_conv -> wsddn-branch 
          '''
          fuse_prob = self._predict(net_conv)
      stds = bbox_pred_fast.data.new(cfg.TRAIN.BBOX_NORMALIZE_STDS).repeat(self._num_classes + 1).unsqueeze(0).expand_as(bbox_pred_fast)
      means = bbox_pred_fast.data.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS).repeat(self._num_classes + 1).unsqueeze(0).expand_as(bbox_pred_fast)
      self._predictions["bbox_pred_fast"] = bbox_pred_fast.mul(Variable(stds)).add(Variable(means))
    else:
      self._add_losses() # compute losses 
Example #26
Source File: anchor_target_layer.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :4])).numpy() 
Example #27
Source File: transforms.py    From Random-Erasing with Apache License 2.0 5 votes vote down vote up
def __call__(self, img):

        if random.uniform(0, 1) > self.EPSILON:
            return img

        for attempt in range(100):
            area = img.size()[1] * img.size()[2]
       
            target_area = random.uniform(self.sl, self.sh) * area
            aspect_ratio = random.uniform(self.r1, 1/self.r1)

            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))

            if w < img.size()[2] and h < img.size()[1]:
                x1 = random.randint(0, img.size()[1] - h)
                y1 = random.randint(0, img.size()[2] - w)
                if img.size()[0] == 3:
                    #img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    #img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    #img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                    img[0, x1:x1+h, y1:y1+w] = self.mean[0]
                    img[1, x1:x1+h, y1:y1+w] = self.mean[1]
                    img[2, x1:x1+h, y1:y1+w] = self.mean[2]
                    #img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
                else:
                    img[0, x1:x1+h, y1:y1+w] = self.mean[1]
                    # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
                return img

        return img 
Example #28
Source File: model_architecture.py    From models with MIT License 5 votes vote down vote up
def edit_tensor_in_numpy(input, trafo):
    # Kept in case tensor transformations should be done in numpy rather than pytorch (might be slightly faster, but is ugly and might break code..)
    is_cuda = input.is_cuda
    if is_cuda:
        input_np = input.cpu().data.numpy()
    else:
        input_np = input.data.numpy()
    del input
    input_np = trafo(input_np)
    input = Variable(torch.from_numpy(input_np))
    if is_cuda:
        input = input.cuda()
    return input 
Example #29
Source File: pth_nms.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def pth_nms(dets, thresh):
  """
  dets has to be a tensor
  """
  if not dets.is_cuda:
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.sort(0, descending=True)[1]
    # order = torch.from_numpy(np.ascontiguousarray(scores.numpy().argsort()[::-1])).long()

    keep = torch.LongTensor(dets.size(0))
    num_out = torch.LongTensor(1)
    nms.cpu_nms(keep, num_out, dets, order, areas, thresh)

    return keep[:num_out[0]]
  else:
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.sort(0, descending=True)[1]
    # order = torch.from_numpy(np.ascontiguousarray(scores.cpu().numpy().argsort()[::-1])).long().cuda()

    dets = dets[order].contiguous()

    keep = torch.LongTensor(dets.size(0))
    num_out = torch.LongTensor(1)
    # keep = torch.cuda.LongTensor(dets.size(0))
    # num_out = torch.cuda.LongTensor(1)
    nms.gpu_nms(keep, num_out, dets, thresh)

    return order[keep[:num_out[0]].cuda()].contiguous()
    # return order[keep[:num_out[0]]].contiguous() 
Example #30
Source File: dataset.py    From PolarSeg with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def collate_fn_BEV(data):
    data2stack=np.stack([d[0] for d in data]).astype(np.float32)
    label2stack=np.stack([d[1] for d in data])
    grid_ind_stack = [d[2] for d in data]
    point_label = [d[3] for d in data]
    xyz = [d[4] for d in data]
    return torch.from_numpy(data2stack),torch.from_numpy(label2stack),grid_ind_stack,point_label,xyz