Python fast_rcnn.config.cfg.PIXEL_MEANS Examples
The following are 30
code examples of fast_rcnn.config.cfg.PIXEL_MEANS().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
fast_rcnn.config.cfg
, or try the search function
.
Example #1
Source File: minibatch.py From Faster-RCNN_TF with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #2
Source File: minibatch.py From rgz_rcnn with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #3
Source File: torch_image_transform_layer.py From py-R-FCN with MIT License | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))
Example #4
Source File: torch_image_transform_layer.py From face-py-faster-rcnn with MIT License | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))
Example #5
Source File: minibatch.py From scene-graph-TF-release with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = roidb[i]['image']() # use image getter if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #6
Source File: minibatch.py From rgz_rcnn with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #7
Source File: minibatch.py From SubCNN with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]] im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #8
Source File: minibatch.py From faster-rcnn-resnet with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #9
Source File: minibatch.py From faster-rcnn-resnet with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #10
Source File: minibatch.py From py-R-FCN with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #11
Source File: torch_image_transform_layer.py From faster-rcnn-resnet with MIT License | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))
Example #12
Source File: minibatch.py From py-R-FCN with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #13
Source File: minibatch.py From face-py-faster-rcnn with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #14
Source File: minibatch.py From face-py-faster-rcnn with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #15
Source File: minibatch.py From SubCNN with MIT License | 6 votes |
def _process_images(roidb): """Builds an input blob from the images in the roidb """ num_images = len(roidb) processed_ims = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS processed_ims.append(im_orig) return processed_ims
Example #16
Source File: minibatch.py From oicr with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] im_shapes = np.zeros((0, 2), dtype=np.float32) for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) im_shapes = np.vstack((im_shapes, im_shape)) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales, im_shapes
Example #17
Source File: minibatch.py From Faster-RCNN_TF with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #18
Source File: minibatch2.py From Faster-RCNN_TF with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_scale = cfg.TRAIN.SCALES_BASE[scale_inds[i]] im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #19
Source File: minibatch2.py From Faster-RCNN_TF with MIT License | 6 votes |
def _get_image_blob_multiscale(roidb): """Builds an input blob from the images in the roidb at multiscales. """ num_images = len(roidb) processed_ims = [] im_scales = [] scales = cfg.TRAIN.SCALES_BASE for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS for im_scale in scales: im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #20
Source File: minibatch.py From face-magnet with Apache License 2.0 | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #21
Source File: minibatch.py From Faster-RCNN_TF with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[2:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] subcls = sublabels_blob[i] plt.imshow(im) print 'class: ', cls, ' subclass: ', subcls plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #22
Source File: minibatch.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #23
Source File: torch_image_transform_layer.py From uai-sdk with Apache License 2.0 | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))
Example #24
Source File: minibatch.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #25
Source File: minibatch.py From uai-sdk with Apache License 2.0 | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales
Example #26
Source File: minibatch.py From uai-sdk with Apache License 2.0 | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #27
Source File: minibatch.py From SubCNN with MIT License | 6 votes |
def _vis_minibatch(im_blob, rois_blob, labels_blob, sublabels_blob): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[2:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] subcls = sublabels_blob[i] plt.imshow(im) print 'class: ', cls, ' subclass: ', subcls plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
Example #28
Source File: minibatch.py From dpl with MIT License | 6 votes |
def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] im_shapes = np.zeros((0, 2), dtype=np.float32) for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale, im_shape = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size) im_scales.append(im_scale) processed_ims.append(im) im_shapes = np.vstack((im_shapes, im_shape)) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales, im_shapes
Example #29
Source File: torch_image_transform_layer.py From face-magnet with Apache License 2.0 | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))
Example #30
Source File: torch_image_transform_layer.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def setup(self, bottom, top): # (1, 3, 1, 1) shaped arrays self.PIXEL_MEANS = \ np.array([[[[0.48462227599918]], [[0.45624044862054]], [[0.40588363755159]]]]) self.PIXEL_STDS = \ np.array([[[[0.22889466674951]], [[0.22446679341259]], [[0.22495548344775]]]]) # The default ("old") pixel means that were already subtracted channel_swap = (0, 3, 1, 2) self.OLD_PIXEL_MEANS = \ cfg.PIXEL_MEANS[np.newaxis, :, :, :].transpose(channel_swap) top[0].reshape(*(bottom[0].shape))