Python fast_rcnn.config.cfg.RNG_SEED Examples
The following are 29
code examples of fast_rcnn.config.cfg.RNG_SEED().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
fast_rcnn.config.cfg
, or try the search function
.

Example #1
Source File: train_svms.py From SubCNN with MIT License | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #2
Source File: train_svms.py From face-py-faster-rcnn with MIT License | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #3
Source File: train_svms.py From caffe-faster-rcnn-resnet-fpn with MIT License | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #4
Source File: train_svms.py From faster-rcnn-resnet with MIT License | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #5
Source File: train_svms.py From py-R-FCN with MIT License | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #6
Source File: train_svms.py From uai-sdk with Apache License 2.0 | 6 votes |
def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = []
Example #7
Source File: train_faster_rcnn_alt_opt.py From py-R-FCN with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #8
Source File: layer.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #9
Source File: train_faster_rcnn_alt_opt.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #10
Source File: layer.py From oicr with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #11
Source File: layer.py From py-R-FCN with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #12
Source File: train_rfcn_alt_opt_5stage.py From py-R-FCN with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #13
Source File: layer.py From SubCNN with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #14
Source File: train_stage1_fast_rcnn.py From faster-rcnn-scenarios with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #15
Source File: generate_proposals.py From faster-rcnn-scenarios with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #16
Source File: train_stage2_rpn.py From faster-rcnn-scenarios with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #17
Source File: train.py From faster-rcnn-scenarios with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #18
Source File: layer.py From SubCNN with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #19
Source File: layer.py From dpl with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #20
Source File: layer.py From face-magnet with Apache License 2.0 | 5 votes |
def __init__(self, queue, roidb, num_classes, gpu_id=0): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self.gpu_id = gpu_id np.random.seed(gpu_id) self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #21
Source File: train_faster_rcnn_alt_opt.py From uai-sdk with Apache License 2.0 | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #22
Source File: train_rfcn_alt_opt_5stage.py From uai-sdk with Apache License 2.0 | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #23
Source File: train_faster_rcnn_alt_opt.py From uai-sdk with Apache License 2.0 | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #24
Source File: layer.py From uai-sdk with Apache License 2.0 | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #25
Source File: train.py From scene-graph-TF-release with MIT License | 5 votes |
def train_net(network_name, imdb, roidb, output_dir, tf_log, pretrained_model=None, max_iters=200000): config = tf.ConfigProto() config.allow_soft_placement=True # config.gpu_options.allow_growth=True with tf.Session(config=config) as sess: tf.set_random_seed(cfg.RNG_SEED) trainer = Trainer(sess, network_name, imdb, roidb, output_dir, tf_log, pretrained_model=pretrained_model) trainer.train_model(sess, max_iters)
Example #26
Source File: train_faster_rcnn_alt_opt.py From faster-rcnn-resnet with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #27
Source File: layer.py From faster-rcnn-resnet with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)
Example #28
Source File: train_faster_rcnn_alt_opt.py From face-py-faster-rcnn with MIT License | 5 votes |
def _init_caffe(cfg): """Initialize pycaffe in a training process. """ import caffe # fix the random seeds (numpy and caffe) for reproducibility np.random.seed(cfg.RNG_SEED) caffe.set_random_seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() caffe.set_device(cfg.GPU_ID)
Example #29
Source File: layer.py From face-py-faster-rcnn with MIT License | 5 votes |
def __init__(self, queue, roidb, num_classes): super(BlobFetcher, self).__init__() self._queue = queue self._roidb = roidb self._num_classes = num_classes self._perm = None self._cur = 0 self._shuffle_roidb_inds() # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED)