Python pandas.ExcelWriter() Examples
The following are 30
code examples of pandas.ExcelWriter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: posterior_utils.py From scVI with MIT License | 7 votes |
def save_cluster_xlsx( filepath: str, de_results: List[pd.DataFrame], cluster_names: List ): """Saves multi-clusters DE in an xlsx sheet Parameters ---------- filepath xslx save path de_results list of pandas Dataframes for each cluster cluster_names list of cluster names """ writer = pd.ExcelWriter(filepath, engine="xlsxwriter") for i, x in enumerate(cluster_names): de_results[i].to_excel(writer, sheet_name=str(x)) writer.close()
Example #2
Source File: excel.py From CO2MPAS-TA with European Union Public License 1.1 | 6 votes |
def _clone_excel(file_name): from urllib.error import URLError import openpyxl try: from urllib.request import urlopen book = openpyxl.load_workbook(urlopen(file_name)) except (ValueError, URLError): with open(file_name, 'rb') as file: book = openpyxl.load_workbook(file) import io import pandas as pd fd = io.BytesIO() # noinspection PyTypeChecker writer = pd.ExcelWriter( fd, engine='openpyxl', optimized_write=True, write_only=True ) writer.book = book writer.sheets.update(dict((ws.title, ws) for ws in book.worksheets)) return writer, fd
Example #3
Source File: recorder.py From RLs with Apache License 2.0 | 6 votes |
def __init__(self, kwargs, *, cp_dir, log_dir, excel_dir, logger2file): self.log_dir = log_dir self.writer = tf.summary.create_file_writer(log_dir) # self.writer.set_as_default() self.checkpoint = tf.train.Checkpoint(**kwargs) self.saver = tf.train.CheckpointManager(self.checkpoint, directory=cp_dir, max_to_keep=5, checkpoint_name='ckpt') self.excel_writer = pd.ExcelWriter(excel_dir + '/data.xlsx') self.logger = self.create_logger( name='logger', console_level=logging.INFO, console_format='%(levelname)s : %(message)s', logger2file=logger2file, file_name=log_dir + 'log.txt', file_level=logging.WARNING, file_format='%(lineno)d - %(asctime)s - %(module)s - %(funcName)s - %(levelname)s - %(message)s' )
Example #4
Source File: Search.py From staramr with Apache License 2.0 | 6 votes |
def _resize_columns(self, sheetname_dataframe, writer, max_width, text_wrap=True): """ Resizes columns in workbook. :param sheetname_dataframe: A map mapping the sheet name to a dataframe. :param writer: The ExcelWriter, which the worksheets already added using writer.to_excel :param max_width: The maximum width of the columns. :param text_wrap: Whether or not to turn on text wrapping if columns surpass max_width. :return: None """ workbook = writer.book wrap_format = workbook.add_format({'text_wrap': text_wrap}) for name in sheetname_dataframe: for i, width in enumerate(self._get_col_widths(sheetname_dataframe[name])): if width > max_width: writer.sheets[name].set_column(i, i, width=max_width, cell_format=wrap_format) else: writer.sheets[name].set_column(i, i, width=width)
Example #5
Source File: pandas_bridge.py From evo with GNU General Public License v3.0 | 6 votes |
def save_df_as_table(df, path, format_str=SETTINGS.table_export_format, transpose=SETTINGS.table_export_transpose, confirm_overwrite=False): if confirm_overwrite and not user.check_and_confirm_overwrite(path): return if transpose: df = df.T if format_str == "excel": # requires xlwt and/or openpyxl to be installed with pd.ExcelWriter(path) as writer: df.to_excel(writer) else: getattr(df, "to_" + format_str)(path) logger.debug("{} table saved to: {}".format( format_str, path))
Example #6
Source File: create_excel.py From ditto with BSD 3-Clause "New" or "Revised" License | 6 votes |
def write_to_excel(comp_values): current_dir = os.path.realpath(os.path.dirname(__file__)) df = pd.DataFrame(comp_values) with pd.ExcelWriter(os.path.join(current_dir, "output" + ".xlsx")) as writer: for col in df: df1 = pd.concat([df[col], df[col].apply(pd.Series)], axis=1).drop( [col], axis=1 ) df1.to_excel(writer, sheet_name=col) worksheet = writer.sheets[col] worksheet.set_column(0, 19, 16) # Tests for running the plots independently # if __name__ == "__main__": # write_to_excel({'ieee_4node': {'cyme_output': {'1': [1.796043190045738, 5.388117303585387, 0.10784685850195197, 0.5904760366014294], '2': [2.0202605985010313, 6.518985500570162, 0.22820004614399358, 0.8158267453203445], '3': [0.2536631703405771, 0.8984713888134145, 0.06581202655980385, 0.24831713333607722], '4': [0.5340964354229437, 2.3119539172019614, 0.23396047634518685, 0.46239954705589636]}, 'demo_output': {}, 'gridlabd_output': {'sourcebus': [1.7960358301233543, 5.388107490370064, 1.6037668205527515, 6.415067282211007], 'node2': [11.615625751028661, 11.520529778987775, 9.073598525409436, 5.8609512435066655], 'node3': [1.2918305507375225, 1.2769209930818217, 1.0089298663668416, 0.6470699623879508], 'load4': [0.8640026377752124, 0.41845221416471984, 0.8640056993976751, 0.4184497947877163], 'node1': [11.95788550650638, 12.207304856874984, 9.189536257036401, 6.043847565567804]}, 'opendss_output': {'sourcebus': [0.0002463564270509644, 0.0007390394604267333, 0.00018858267905109123, 0.0007542723977164494], 'n2': [0.29564583680274237, 0.7167450994489304, 0.11638654713225582, 0.2358768460293939], 'n3': [0.06870713919610347, 0.23863115122119738, 0.048858783362332986, 0.18910852255356034], 'n4': [0.5051857600366919, 0.7781653125896516, 0.21133259350889166, 0.4141945608522559]}, 'synergi_output': {'node_61746791326': [0.000999999415454687, 0.0009999923015324673, 0.0009999996415073831, 0.0009999921771822826], 'node_61746791327': [1.4052433405517772, 0.8534261345199505, 1.100207413576314, 0.09925701086833777], 'node_61746839533': [0.5767771891663984, 1.2140898058567755, 0.5400898631419725, 1.138540681909626], 'node_61746842036': [2.2802968553458975, 1.9930774142792114, 1.8176517572334512, 1.1452767401123385]}}, 'ieee_13node': {'cyme_output': {'650': [1.6442002249862027, 2.525071217368887, 0.00175590064769382, 0.013818660541591976], '633': [2.191962671993786, 2.7645145724914206, 0.13502678340376117, 0.30258402028428943], '634': [0.03373885959967424, 0.0437948202860033, 0.006851233217346727, 0.01281928879314106], '7': [1.6444948113338582, 2.5248296649991535, 0.0027565424317121945, 0.014811194353743895], 'rg60': [1.6444956621823732, 2.524829864977333, 0.002756707027920302, 0.014813876873885912], '632': [2.1103087225772716, 2.527515777000864, 0.0791161472443358, 0.2320482533916044], '652': [1.2506186991395154, 1.2878722947329384, 1.2506186991395154, 1.2878722947329384], '611': [1.1239472985549395, 1.3770646713358636, 1.1239472985549395, 1.3770646713358636], '692': [2.631742710227492, 2.70681263013228, 0.16404792757812026, 0.44179116013620445], '645': [2.2388323604857887, 2.784026210466048, 0.1850730276433944, 0.31739303544051045], '646':[2.317657028721549, 2.949917446377885, 0.24850513527121498, 0.3676808102436452], '671': [2.630682474394549, 2.706364834017407, 0.16301316760562778, 0.44085146992520197], '675': [2.7067614833052813, 2.7173749384388346, 0.23870615585157873, 0.47708961405564254], '684': [2.6970360888981926, 2.8036701407791496, 0.23157910972791085, 0.5317115549334911], '680': [2.7200580191836536, 3.2662254613120227, 0.19824054093535326, 0.5540558678888127]}, 'demo_output': {}, 'gridlabd_output': {}, 'opendss_output': {'sourcebus': [0.17960357997560872, 0.5388107499674782, 0.16044213136336458, 0.6414216083753025], '650': [3.46173977571697e-05, 0.00027688611330264445, 0.00024463297015852746, 0.0011161493255213788], 'rg60': [0.0003803596442662037, 0.0006225803505498496, 0.0005903829452526287, 0.0014616392165030185], '633': [0.38047984831844595, 0.8729366035169337, 0.13271664569004354, 0.28972479926771977], '634': [0.010133922766079825, 0.020570453379602505, 0.006830751758597249, 0.012931935773494248], '671': [0.6108771018713602, 1.3265863413420522, 0.16093756369535386, 0.42423496513300524], '645': [0.4373080269407039, 0.8584390204064538, 0.18280284255143675, 0.32024566175842095], '646': [0.536560726260114, 0.9883607573047537, 0.24564544687076215, 0.36912074589189336], '692': [0.6119751654440972, 1.3274110796789444, 0.16196524206540175, 0.4251679482288616], '675': [0.7447836834016821, 1.3496142794655475, 0.20882248763406844, 0.46165856154276824], '611': [0.47109807838681994, 0.8597942885112269, 0.47109807838681994, 0.8597942885112269], '652': [0.5900525671135924, 0.8394468662430931, 0.5900525671135924, 0.8394468662430931], '670': [0.3852338293138269, 0.8975161336344963, 0.1039477429886314, 0.2879817616207214], '632': [0.2799093266146708, 0.6803831271514527, 0.07670340676752073, 0.21819919790776035], '680': [0.7346431542735055, 1.6877642140995293, 0.19615949605780691, 0.5372620670065573], '684': [0.7244901189090343, 1.397819420078607, 0.22833210323410577, 0.4698019455814719]}, 'synergi_output': {}}})
Example #7
Source File: sct_analyze_lesion.py From spinalcordtoolbox with MIT License | 6 votes |
def pack_measures(self): writer = pd.ExcelWriter(self.excel_name, engine='xlwt') self.measure_pd.to_excel(writer, sheet_name='measures', index=False, engine='xlwt') # Add the total column and row if self.path_template is not None: for sheet_name in self.distrib_matrix_dct: if '#' in sheet_name: df = self.distrib_matrix_dct[sheet_name].copy() df = df.append(df.sum(numeric_only=True, axis=0), ignore_index=True) df['total'] = df.sum(numeric_only=True, axis=1) df.iloc[-1, df.columns.get_loc('vert')] = 'total' df.to_excel(writer, sheet_name=sheet_name, index=False, engine='xlwt') else: self.distrib_matrix_dct[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False, engine='xlwt') # Save pickle self.distrib_matrix_dct['measures'] = self.measure_pd with open(self.pickle_name, 'wb') as handle: pickle.dump(self.distrib_matrix_dct, handle) # Save Excel writer.save()
Example #8
Source File: test_io.py From modin with Apache License 2.0 | 6 votes |
def test_to_excel(): modin_df = create_test_modin_dataframe() pandas_df = create_test_pandas_dataframe() TEST_EXCEL_DF_FILENAME = "test_df.xlsx" TEST_EXCEL_pandas_FILENAME = "test_pandas.xlsx" modin_writer = pandas.ExcelWriter(TEST_EXCEL_DF_FILENAME) pandas_writer = pandas.ExcelWriter(TEST_EXCEL_pandas_FILENAME) modin_df.to_excel(modin_writer) pandas_df.to_excel(pandas_writer) modin_writer.save() pandas_writer.save() assert assert_files_eq(TEST_EXCEL_DF_FILENAME, TEST_EXCEL_pandas_FILENAME) teardown_test_file(TEST_EXCEL_DF_FILENAME) teardown_test_file(TEST_EXCEL_pandas_FILENAME)
Example #9
Source File: test_io.py From pyam with Apache License 2.0 | 6 votes |
def test_io_xlsx(test_df, meta_args): # add column to `meta` test_df.set_meta(['a', 'b'], 'string') # write to xlsx (direct file name and ExcelWriter, see bug report #300) file = 'testing_io_write_read.xlsx' for f in [file, pd.ExcelWriter(file)]: test_df.to_excel(f, **meta_args[0]) if isinstance(f, pd.ExcelWriter): f.close() # read from xlsx import_df = IamDataFrame(file, **meta_args[1]) # assert that IamDataFrame instances are equal and delete file assert_iamframe_equal(test_df, import_df) os.remove(file)
Example #10
Source File: results.py From SDGym with MIT License | 6 votes |
def write_results(results, summary, output): writer = pd.ExcelWriter(output, engine='xlsxwriter') cell_fmt = writer.book.add_format({ "font_name": "Arial", "font_size": "10" }) index_fmt = writer.book.add_format({ "font_name": "Arial", "font_size": "10", "bold": True, }) header_fmt = writer.book.add_format({ "font_name": "Arial", "font_size": "10", "bold": True, "bottom": 1 }) add_sheet(summary, 'Number of wins per version', writer, cell_fmt, index_fmt, header_fmt) for version in reversed(sorted(results.keys())): add_sheet(results[version], version, writer, cell_fmt, index_fmt, header_fmt) writer.save()
Example #11
Source File: core.py From pyam with Apache License 2.0 | 6 votes |
def export_meta(self, excel_writer, sheet_name='meta'): """Write the 'meta' indicators of this object to an Excel sheet Parameters ---------- excel_writer : str, path object or ExcelWriter object any valid string path, :class:`pathlib.Path` or :class:`pandas.ExcelWriter` sheet_name : str name of sheet which will contain dataframe of 'meta' indicators """ if not isinstance(excel_writer, pd.ExcelWriter): close = True excel_writer = pd.ExcelWriter(excel_writer) write_sheet(excel_writer, sheet_name, self.meta, index=True) if close: excel_writer.close()
Example #12
Source File: spia.py From pybel with MIT License | 6 votes |
def spia_matrices_to_excel(spia_matrices: SPIADataFrames, path: str) -> None: """Export a SPIA data dictionary into an Excel sheet at the given path. .. note:: # The R import should add the values: # ["nodes"] from the columns # ["title"] from the name of the file # ["NumberOfReactions"] set to "0" """ writer = pd.ExcelWriter(path, engine='xlsxwriter') for relation, df in spia_matrices.items(): df.to_excel(writer, sheet_name=relation, index=False) # Save excel writer.save()
Example #13
Source File: text2xlsx.py From tweets-collector with Apache License 2.0 | 6 votes |
def export_text2xlsx(infile, outfile, field_delimiter, number): df = pd.read_csv(infile, delimiter=field_delimiter, engine='python') rows_number = df.shape[0] if rows_number > number: data_frames = split_dataframe(df, number) frame_number = 1 for frame in data_frames: filename, ext = os.path.splitext(outfile) excel_file = "{}_{}.xlsx".format(filename, frame_number) writer = ExcelWriter(excel_file, engine='xlsxwriter') frame.to_excel(writer, 'sheet1') writer.save() frame_number += 1 else: writer = ExcelWriter(outfile) df.to_excel(writer, 'sheet1') writer.save()
Example #14
Source File: export.py From pymongo-schema with GNU Lesser General Public License v3.0 | 6 votes |
def write_data(self, file_descr): """ Use dataframe to_excel to write into file_descr (filename) - open first if file exists. """ if os.path.isfile(file_descr): print(file_descr, 'exists') # Solution to keep existing data book = load_workbook(file_descr) writer = pd.ExcelWriter(file_descr, engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) self.data_df.to_excel(writer, sheet_name='Mongo_Schema', index=True, float_format='%.2f') writer.save() else: self.data_df.to_excel(file_descr, sheet_name='Mongo_Schema', index=True, float_format='%.2f')
Example #15
Source File: io.py From skan with BSD 3-Clause "New" or "Revised" License | 6 votes |
def write_excel(filename, **kwargs): """Write data tables to an Excel file, using kwarg names as sheet names. Parameters ---------- filename : str The filename to write to. kwargs : dict Mapping from sheet names to data. """ writer = pd.ExcelWriter(filename) for sheet_name, obj in kwargs.items(): if isinstance(obj, dict): obj = _params_dict_to_dataframe(obj) if isinstance(obj, pd.DataFrame): obj.to_excel(writer, sheet_name=sheet_name) writer.save() writer.close()
Example #16
Source File: sync.py From CO2MPAS-TA with European Union Public License 1.1 | 6 votes |
def template(output_file, cycle_type, gear_box_type, wltp_class): """ Writes a sample template OUTPUT_FILE. OUTPUT_FILE: SYNCING input template file (.xlsx). [default: ./datasync.xlsx] """ import pandas as pd from co2mpas.core.model.physical.cycle import dsp theoretical = sh.selector(['times', 'velocities'], dsp(inputs=dict( cycle_type=cycle_type.upper(), gear_box_type=gear_box_type, wltp_class=wltp_class, downscale_factor=0 ), outputs=['times', 'velocities'], shrink=True)) base = dict.fromkeys(( 'times', 'velocities', 'target gears', 'engine_speeds_out', 'engine_coolant_temperatures', 'co2_normalization_references', 'alternator_currents', 'battery_currents', 'target fuel_consumptions', 'target co2_emissions', 'target engine_powers_out' ), []) data = dict(theoretical=theoretical, dyno=base, obd=base) os.makedirs(osp.dirname(output_file), exist_ok=True) with pd.ExcelWriter(output_file) as writer: for k, v in data.items(): pd.DataFrame(v).to_excel(writer, k, index=False) return data
Example #17
Source File: __init__.py From CO2MPAS-TA with European Union Public License 1.1 | 5 votes |
def save_summary(summary, output_summary_file, start_time): """ Save CO2MPAS model configurations. :param summary: Summary data. :type summary: list :param output_summary_file: Output summary file path. :type output_summary_file: str :param start_time: Run start time. :type start_time: datetime.datetime """ import pandas as pd # noinspection PyProtectedMember from .core.write.convert import _co2mpas_info2df, _add_units, _sort_key df = pd.DataFrame(summary) df.set_index(['id', 'base'], inplace=True) df = df.reindex(columns=sorted( df.columns, key=lambda x: _sort_key(x, p_keys=('cycle', 'stage', 'usage', 'param')) )) if not df.columns.empty: df.columns = pd.MultiIndex.from_tuples(_add_units( df.columns, short=False )) os.makedirs(osp.dirname(output_summary_file) or '.', exist_ok=True) with pd.ExcelWriter(output_summary_file) as writer: df.to_excel(writer, 'summary') _co2mpas_info2df(start_time).to_excel(writer, 'proc_info') log.info('CO2MPAS summary written into (%s)...', output_summary_file)
Example #18
Source File: evaluation.py From Towards-Realtime-MOT with MIT License | 5 votes |
def save_summary(summary, filename): import pandas as pd writer = pd.ExcelWriter(filename) summary.to_excel(writer) writer.save()
Example #19
Source File: core.py From pyam with Apache License 2.0 | 5 votes |
def to_excel(self, excel_writer, sheet_name='data', iamc_index=False, include_meta=True, **kwargs): """Write object to an Excel spreadsheet Parameters ---------- excel_writer : str, path object or ExcelWriter object any valid string path, :class:`pathlib.Path` or :class:`pandas.ExcelWriter` sheet_name : string name of sheet which will contain :meth:`timeseries()` data iamc_index : bool, default False if True, use `['model', 'scenario', 'region', 'variable', 'unit']`; else, use all 'data' columns include_meta : boolean or string if True, write 'meta' to an Excel sheet name 'meta' (default); if this is a string, use it as sheet name """ # open a new ExcelWriter instance (if necessary) close = False if not isinstance(excel_writer, pd.ExcelWriter): close = True excel_writer = pd.ExcelWriter(excel_writer, engine='openpyxl') # write data table write_sheet(excel_writer, sheet_name, self._to_file_format(iamc_index)) # write meta table unless `include_meta=False` if include_meta: meta_rename = dict([(i, i.capitalize()) for i in META_IDX]) write_sheet(excel_writer, 'meta' if include_meta is True else include_meta, self.meta.reset_index().rename(columns=meta_rename)) # close the file if `excel_writer` arg was a file name if close: excel_writer.close()
Example #20
Source File: visualizer.py From malmo-challenge with MIT License | 5 votes |
def close(self, format='csv'): import pandas as pd if format == 'csv': pd.DataFrame.from_dict(self._data, orient='index').to_csv(self._file) elif format == 'json': pd.DataFrame.from_dict(self._data, orient='index').to_json(self._file) else: writer = pd.ExcelWriter(self._file) pd.DataFrame.from_dict(self._data, orient='index').to_excel(writer) writer.save()
Example #21
Source File: fs.py From dart-fss with MIT License | 5 votes |
def save(self, filename: str = None, path: str = None): """ 재무제표 정보를 모두 엑셀파일로 일괄저장 Parameters ---------- filename: str 저장할 파일명(default: {corp_code}_{report_tp}.xlsx) path: str 저장할 폴더(default: 실행폴더/fsdata) """ import os if path is None: path = os.getcwd() path = os.path.join(path, 'fsdata') create_folder(path) if filename is None: filename = '{}_{}.xlsx'.format(self.info.get('corp_code'), self.info.get('report_tp')) file_path = os.path.join(path, filename) with pd.ExcelWriter(file_path) as writer: for tp in self._statements: fs = self._statements[tp] label = self._labels[tp] if fs is not None: sheet_name = 'Data_' + tp fs.to_excel(writer, sheet_name=sheet_name) sheet_name = 'Labels_' + tp label.to_excel(writer, sheet_name=sheet_name) return file_path
Example #22
Source File: core.py From docassemble with MIT License | 5 votes |
def export(self, filename=None, file_format=None, title=None, freeze_panes=True): if file_format is None: if filename is not None: base_filename, file_format = os.path.splitext(filename) file_format = re.sub(r'^\.', '', file_format) else: file_format = 'xlsx' if file_format not in ('json', 'xlsx', 'csv'): raise Exception("export: unsupported file format") header_output, contents = self.header_and_contents() df = pandas.DataFrame.from_records(contents, columns=header_output) outfile = DAFile() outfile.set_random_instance_name() if filename is not None: outfile.initialize(filename=filename, extension=file_format) else: outfile.initialize(extension=file_format) if file_format == 'xlsx': if freeze_panes: freeze_panes = (1, 0) else: freeze_panes = None writer = pandas.ExcelWriter(outfile.path(), engine='xlsxwriter', options={'remove_timezone': True}) df.to_excel(writer, sheet_name=title, index=False, freeze_panes=freeze_panes) writer.save() elif file_format == 'csv': df.to_csv(outfile.path(), index=False) elif file_format == 'json': df.to_json(outfile.path(), orient='records') outfile.commit() outfile.retrieve() return outfile
Example #23
Source File: library_system.py From mini-library with MIT License | 5 votes |
def update_excel_library(): readers_copy = readers_df.copy(deep=True) books_copy = books_df.copy(deep=True) readers_schema = ["借书号", "姓名", "性别", "单位", "借书权限", "借书额度"] books_schema = ["ISBN", "书籍名称", "作者", "出版社", "出版日期", "页数", "价格", "主题", "馆藏本数", "索书号", "内容简介", "书籍位置"] readers_copy.columns = readers_schema books_copy.columns = books_schema with pd.ExcelWriter(os.path.join(os.getcwd(), "图书馆信息.xlsx")) as writer_library: readers_copy.to_excel(writer_library, sheet_name="读者", index=False) books_copy.to_excel(writer_library, sheet_name="书籍", index=False)
Example #24
Source File: runner_analyzer.py From workload-collocation-agent with Apache License 2.0 | 5 votes |
def multiple_dfs(self, df_list, sheets, file_name, spaces): writer = pd.ExcelWriter(file_name, engine='xlsxwriter') row = 0 for dataframe in df_list: dataframe.to_excel(writer, sheet_name=sheets, startrow=row, startcol=0) row = row + len(dataframe.index) + spaces + 1 writer.save()
Example #25
Source File: generate_stock_report.py From chinese-stock-Financial-Index with Apache License 2.0 | 5 votes |
def save_xls(self, dframe): # 把数据写到已行业命名的excel文件的名字sheet xls_path = os.path.join(current_folder, self.name + '.xlsx') if os.path.exists(xls_path): # excel 文件已经存在 book = load_workbook(xls_path) writer = pd.ExcelWriter(xls_path, engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) dframe.to_excel(writer, self.name) writer.save() else: # 文件还不存在 writer = ExcelWriter(xls_path) dframe.to_excel(writer, self.name) writer.save()
Example #26
Source File: export.py From patzilla with GNU Affero General Public License v3.0 | 5 votes |
def create(self): # A memory buffer as ExcelWriter storage backend buffer = BytesIO() self.workbook.filename = buffer # Create "cover" sheet self.write_cover_sheet() # Create "queries" sheet self.write_queries_sheet() # Create numberlist sheets self.write_numberlist_sheets() # Create "comments" sheet self.write_comments_sheet() # Save/persist ExcelWriter model self.writer.save() # Get hold of buffer content payload = buffer.getvalue() return payload
Example #27
Source File: export.py From patzilla with GNU Affero General Public License v3.0 | 5 votes |
def __init__(self, data): super(DossierXlsx, self).__init__(data) self.writer = pandas.ExcelWriter('temp.xlsx', engine='xlsxwriter') self.workbook = self.writer.book add_worksheet_monkeypatch(self.workbook) self.format_wrap_top = self.workbook.add_format() self.format_wrap_top.set_text_wrap() self.format_wrap_top.set_align('top') self.format_small_font = self.workbook.add_format({'align': 'vcenter', 'font_size': 9}) self.format_small_font_align_top = self.workbook.add_format({'align': 'top', 'font_size': 9})
Example #28
Source File: library_system.py From mini-library with MIT License | 5 votes |
def update_excel_history(): history_copy = history_df.copy(deep=True) history_schema = ["时间", "单位", "姓名", "借书号", "动作", "ISBN", "书名", "书籍位置", "还书期限"] history_copy.columns = history_schema with pd.ExcelWriter(os.path.join(os.getcwd(), "借阅记录.xlsx")) as writer_history: history_copy.to_excel(writer_history, sheet_name="借阅记录", index=False)
Example #29
Source File: library_system.py From mini-library with MIT License | 5 votes |
def sql_to_excel(): conn = get_connection() readers_sql = "SELECT * FROM Readers" books_sql = "SELECT * FROM Books" history_sql = "SELECT * FROM History" readers_df = pd.read_sql(readers_sql, conn) books_df = pd.read_sql(books_sql, conn) history_df = pd.read_sql(history_sql, conn) readers_schema = ["借书号", "姓名", "性别", "单位", "借书权限", "借书额度"] books_schema = ["ISBN", "书籍名称", "作者", "出版社", "出版日期", "页数", "价格", "主题", "馆藏本数", "索书号", "内容简介", "书籍位置"] history_schema = ["时间", "单位", "姓名", "借书号", "动作", "ISBN", "书名", "书籍位置", "还书期限"] readers_df.columns = readers_schema books_df.columns = books_schema history_df.columns = history_schema backup_path = os.path.join(os.getcwd(), "备份恢复") if not os.path.isdir(backup_path): os.makedirs(backup_path) with pd.ExcelWriter(os.path.join(backup_path, "图书馆信息.xlsx")) as writer_library: readers_df.to_excel(writer_library, sheet_name="读者", index=False) books_df.to_excel(writer_library, sheet_name="书籍", index=False) with pd.ExcelWriter(os.path.join(backup_path, "借阅记录.xlsx")) as writer_history: history_df.to_excel(writer_history, sheet_name="借阅记录", index=False)
Example #30
Source File: visualizer.py From malmo-challenge with MIT License | 5 votes |
def close(self, format='csv'): import pandas as pd if format == 'csv': pd.DataFrame.from_dict(self._data, orient='index').to_csv(self._file) elif format == 'json': pd.DataFrame.from_dict(self._data, orient='index').to_json(self._file) else: writer = pd.ExcelWriter(self._file) pd.DataFrame.from_dict(self._data, orient='index').to_excel(writer) writer.save()