Python pandas.rolling_std() Examples
The following are 10
code examples of pandas.rolling_std().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: own_tech.py From MultipleFactorRiskModel with MIT License | 6 votes |
def getVol(ret): ''' calculate volatility value of log return ratio :param DataFrame ret: return value :param int interval: interval over which volatility is calculated :return: DataFrame standard_error: volatility value ''' print '''************************************************************************************* a kind WARNING from the programmer(not the evil interpreter) function getVol: we have different values for interval in test code and real code,because the sample file may not have sufficient rows for real interval,leading to empty matrix.So be careful of the value you choose ************************************************************************************** ''' # real value # interval = 26 # test value interval = 4 standard_error = pd.rolling_std(ret, interval) standard_error.dropna(inplace=True) standard_error.index = range(standard_error.shape[0]) return standard_error
Example #2
Source File: c5.py From abu with GNU General Public License v3.0 | 6 votes |
def sample_531_1(): """ 5.3.1_1 绘制股票的收益,及收益波动情况 demo list :return: """ # 示例序列 demo_list = np.array([2, 4, 16, 20]) # 以三天为周期计算波动 demo_window = 3 # pd.rolling_std * np.sqrt print('pd.rolling_std(demo_list, window=demo_window, center=False) * np.sqrt(demo_window):\n', pd_rolling_std(demo_list, window=demo_window, center=False) * np.sqrt(demo_window)) print('pd.Series([2, 4, 16]).std() * np.sqrt(demo_window):', pd.Series([2, 4, 16]).std() * np.sqrt(demo_window)) print('pd.Series([4, 16, 20]).std() * np.sqrt(demo_window):', pd.Series([4, 16, 20]).std() * np.sqrt(demo_window)) print('np.sqrt(pd.Series([2, 4, 16]).var() * demo_window):', np.sqrt(pd.Series([2, 4, 16]).var() * demo_window))
Example #3
Source File: technical_indicator.py From NowTrade with MIT License | 5 votes |
def results(self, data_frame): y_value = data_frame[self.y_data] x_value = data_frame[self.x_data] if self.lookback >= len(x_value): return ([self.value, self.hedge_ratio, self.spread, self.zscore], \ [pd.Series(np.nan), pd.Series(np.nan), pd.Series(np.nan), pd.Series(np.nan)]) ols_result = pd.ols(y=y_value, x=x_value, window=self.lookback) hedge_ratio = ols_result.beta['x'] spread = y_value - hedge_ratio * x_value data_frame[self.value] = ols_result.resid data_frame[self.hedge_ratio] = hedge_ratio data_frame[self.spread] = spread data_frame[self.zscore] = (spread - \ pd.rolling_mean(spread, self.lookback)) / \ pd.rolling_std(spread, self.lookback)
Example #4
Source File: ins.py From tia with BSD 3-Clause "New" or "Revised" License | 5 votes |
def volatility(self, n, freq=None, which='close', ann=True, model='ln', min_periods=1, rolling='simple'): """Return the annualized volatility series. N is the number of lookback periods. :param n: int, number of lookback periods :param freq: resample frequency or None :param which: price series to use :param ann: If True then annualize :param model: {'ln', 'pct', 'bbg'} ln - use logarithmic price changes pct - use pct price changes bbg - use logarithmic price changes but Bloomberg uses actual business days :param rolling:{'simple', 'exp'}, if exp, use ewmstd. if simple, use rolling_std :return: """ if model not in ('bbg', 'ln', 'pct'): raise ValueError('model must be one of (bbg, ln, pct), not %s' % model) if rolling not in ('simple', 'exp'): raise ValueError('rolling must be one of (simple, exp), not %s' % rolling) px = self.frame[which] px = px if not freq else px.resample(freq, how='last') if model == 'bbg' and periods_in_year(px) == 252: # Bloomberg uses business days, so need to convert and reindex orig = px.index px = px.resample('B').ffill() chg = np.log(px / px.shift(1)) chg[chg.index - orig] = np.nan if rolling == 'simple': vol = pd.rolling_std(chg, n, min_periods=min_periods).reindex(orig) else: vol = pd.ewmstd(chg, span=n, min_periods=n) return vol if not ann else vol * np.sqrt(260) else: chg = px.pct_change() if model == 'pct' else np.log(px / px.shift(1)) if rolling == 'simple': vol = pd.rolling_std(chg, n, min_periods=min_periods) else: vol = pd.ewmstd(chg, span=n, min_periods=n) return vol if not ann else vol * np.sqrt(periods_in_year(vol))
Example #5
Source File: ret.py From tia with BSD 3-Clause "New" or "Revised" License | 5 votes |
def rolling_std(self, n): return pd.rolling_std(self.rets, n)
Example #6
Source File: ret.py From tia with BSD 3-Clause "New" or "Revised" License | 5 votes |
def rolling_std_ann(self, n): return self.rolling_std(n) * np.sqrt(self.pds_per_year)
Example #7
Source File: compat.py From jqfactor_analyzer with MIT License | 5 votes |
def rolling_std(x, window, min_periods=None, center=False, ddof=1): if PD_VERSION >= '0.18.0': return x.rolling( window, min_periods=min_periods, center=center ).std(ddof=ddof) else: return pd.rolling_std( x, window, min_periods=min_periods, center=center, ddof=ddof )
Example #8
Source File: bollinger.py From prophet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def run(self, data, symbols, lookback, **kwargs): prices = data['prices'].copy() rolling_std = pd.rolling_std(prices, lookback) rolling_mean = pd.rolling_mean(prices, lookback) bollinger_values = (prices - rolling_mean) / (rolling_std) for s_key in symbols: prices[s_key] = prices[s_key].fillna(method='ffill') prices[s_key] = prices[s_key].fillna(method='bfill') prices[s_key] = prices[s_key].fillna(1.0) return bollinger_values
Example #9
Source File: moving_average.py From MTSAnomalyDetection with Apache License 2.0 | 5 votes |
def explain_anomalies_rolling_std(y, window_size, sigma=1.0): """Helps in exploring the anamolies using rolling standard deviation Args: y (pandas.Series): independent variable window_size (int): rolling window size sigma (int): value for standard deviation Returns: a dict (dict of 'standard_deviation': int, 'anomalies_dict': (index: value)) containing information about the points indentified as anomalies """ avg = moving_average(y, window_size) avg_list = avg.tolist() residual = y - avg # Calculate the variation in the distribution of the residual testing_std = pd.rolling_std(residual, window_size) testing_std_as_df = pd.DataFrame(testing_std) rolling_std = testing_std_as_df.replace(np.nan, testing_std_as_df.ix[window_size - 1]).round(3).iloc[:, 0].tolist() std = np.std(residual) return {'stationary standard_deviation': round(std, 3), 'anomalies_dict': collections.OrderedDict([(index, y_i) for index, y_i, avg_i, rs_i in zip(count(), y, avg_list, rolling_std) if (y_i > avg_i + (sigma * rs_i)) | ( y_i < avg_i - (sigma * rs_i))])} # This function is repsonsible for displaying how the function performs on the given dataset.
Example #10
Source File: 1stock_price_prediction.py From Python-Machine-Learning-By-Example with MIT License | 4 votes |
def generate_features(df): """ Generate features for a stock/index based on historical price and performance Args: df (dataframe with columns "Open", "Close", "High", "Low", "Volume", "Adjusted Close") Returns: dataframe, data set with new features """ df_new = pd.DataFrame() # 6 original features df_new['open'] = df['Open'] df_new['open_1'] = df['Open'].shift(1) df_new['close_1'] = df['Close'].shift(1) df_new['high_1'] = df['High'].shift(1) df_new['low_1'] = df['Low'].shift(1) df_new['volume_1'] = df['Volume'].shift(1) # 31 original features # average price df_new['avg_price_5'] = pd.rolling_mean(df['Close'], window=5).shift(1) df_new['avg_price_30'] = pd.rolling_mean(df['Close'], window=21).shift(1) df_new['avg_price_365'] = pd.rolling_mean(df['Close'], window=252).shift(1) df_new['ratio_avg_price_5_30'] = df_new['avg_price_5'] / df_new['avg_price_30'] df_new['ratio_avg_price_5_365'] = df_new['avg_price_5'] / df_new['avg_price_365'] df_new['ratio_avg_price_30_365'] = df_new['avg_price_30'] / df_new['avg_price_365'] # average volume df_new['avg_volume_5'] = pd.rolling_mean(df['Volume'], window=5).shift(1) df_new['avg_volume_30'] = pd.rolling_mean(df['Volume'], window=21).shift(1) df_new['avg_volume_365'] = pd.rolling_mean(df['Volume'], window=252).shift(1) df_new['ratio_avg_volume_5_30'] = df_new['avg_volume_5'] / df_new['avg_volume_30'] df_new['ratio_avg_volume_5_365'] = df_new['avg_volume_5'] / df_new['avg_volume_365'] df_new['ratio_avg_volume_30_365'] = df_new['avg_volume_30'] / df_new['avg_volume_365'] # standard deviation of prices df_new['std_price_5'] = pd.rolling_std(df['Close'], window=5).shift(1) df_new['std_price_30'] = pd.rolling_std(df['Close'], window=21).shift(1) df_new['std_price_365'] = pd.rolling_std(df['Close'], window=252).shift(1) df_new['ratio_std_price_5_30'] = df_new['std_price_5'] / df_new['std_price_30'] df_new['ratio_std_price_5_365'] = df_new['std_price_5'] / df_new['std_price_365'] df_new['ratio_std_price_30_365'] = df_new['std_price_30'] / df_new['std_price_365'] # standard deviation of volumes df_new['std_volume_5'] = pd.rolling_std(df['Volume'], window=5).shift(1) df_new['std_volume_30'] = pd.rolling_std(df['Volume'], window=21).shift(1) df_new['std_volume_365'] = pd.rolling_std(df['Volume'], window=252).shift(1) df_new['ratio_std_volume_5_30'] = df_new['std_volume_5'] / df_new['std_volume_30'] df_new['ratio_std_volume_5_365'] = df_new['std_volume_5'] / df_new['std_volume_365'] df_new['ratio_std_volume_30_365'] = df_new['std_volume_30'] / df_new['std_volume_365'] # # return df_new['return_1'] = ((df['Close'] - df['Close'].shift(1)) / df['Close'].shift(1)).shift(1) df_new['return_5'] = ((df['Close'] - df['Close'].shift(5)) / df['Close'].shift(5)).shift(1) df_new['return_30'] = ((df['Close'] - df['Close'].shift(21)) / df['Close'].shift(21)).shift(1) df_new['return_365'] = ((df['Close'] - df['Close'].shift(252)) / df['Close'].shift(252)).shift(1) df_new['moving_avg_5'] = pd.rolling_mean(df_new['return_1'], window=5) df_new['moving_avg_30'] = pd.rolling_mean(df_new['return_1'], window=21) df_new['moving_avg_365'] = pd.rolling_mean(df_new['return_1'], window=252) # the target df_new['close'] = df['Close'] df_new = df_new.dropna(axis=0) return df_new