Python pandas.IndexSlice() Examples
The following are 30
code examples of pandas.IndexSlice().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: test_partial_slicing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), period_range('2014-01', periods=20, freq='M')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Period('2014-10')::-1], SLC[9::-1]) assert_slices_equivalent(SLC['2014-10'::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:Period('2014-10'):-1], SLC[:8:-1]) assert_slices_equivalent(SLC[:'2014-10':-1], SLC[:8:-1]) assert_slices_equivalent(SLC['2015-02':'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2015-02':Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2014-10':'2015-02':-1], SLC[:0])
Example #2
Source File: test_style.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_where_subset(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = {(r, c): [style1 if f(self.df.loc[row, col]) else style2] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected
Example #3
Source File: test_slice.py From recruit with Apache License 2.0 | 6 votes |
def test_non_reducing_slice_on_multiindex(self): # GH 19861 dic = { ('a', 'd'): [1, 4], ('a', 'c'): [2, 3], ('b', 'c'): [3, 2], ('b', 'd'): [4, 1] } df = pd.DataFrame(dic, index=[0, 1]) idx = pd.IndexSlice slice_ = idx[:, idx['b', 'd']] tslice_ = _non_reducing_slice(slice_) result = df.loc[tslice_] expected = pd.DataFrame({('b', 'd'): [4, 1]}) tm.assert_frame_equal(result, expected)
Example #4
Source File: test_style.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1)
Example #5
Source File: test_style.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_where_subset_compare_with_applymap(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' def g(x): return style1 if f(x) else style2 slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = self.df.style.applymap(g, subset=slice_)._compute().ctx assert result == expected
Example #6
Source File: test_style.py From vnpy_crypto with MIT License | 6 votes |
def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = dict(((r, c), ['foo: bar']) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) assert result == expected
Example #7
Source File: test_style.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = {(r, c): ['foo: bar'] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected
Example #8
Source File: test_style.py From vnpy_crypto with MIT License | 6 votes |
def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1)
Example #9
Source File: test_indexing.py From recruit with Apache License 2.0 | 6 votes |
def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) if not idx.is_integer: # For integer indices, ix and plain getitem are position-based. tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) for idx in [_mklbl('A', 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) s = Series(np.arange(20), index=idx) assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1]) assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0])
Example #10
Source File: test_partial_slicing.py From recruit with Apache License 2.0 | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), period_range('2014-01', periods=20, freq='M')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Period('2014-10')::-1], SLC[9::-1]) assert_slices_equivalent(SLC['2014-10'::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:Period('2014-10'):-1], SLC[:8:-1]) assert_slices_equivalent(SLC[:'2014-10':-1], SLC[:8:-1]) assert_slices_equivalent(SLC['2015-02':'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2015-02':Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2014-10':'2015-02':-1], SLC[:0])
Example #11
Source File: style.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def hide_columns(self, subset): """ Hide columns from rendering. .. versionadded:: 0.23.0 Parameters ---------- subset : IndexSlice An argument to ``DataFrame.loc`` that identifies which columns are hidden. Returns ------- self : Styler """ subset = _non_reducing_slice(subset) hidden_df = self.data.loc[subset] self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns) return self # ----------------------------------------------------------------------- # A collection of "builtin" styles # -----------------------------------------------------------------------
Example #12
Source File: test_partial_slicing.py From recruit with Apache License 2.0 | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1]) assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1]) assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1]) assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1]) assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):- 1], SLC[15:6:-1]) assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0])
Example #13
Source File: helpers.py From quail with MIT License | 6 votes |
def df2list(df): """ Convert a MultiIndex df to list Parameters ---------- df : pandas.DataFrame A MultiIndex DataFrame where the first level is subjects and the second level is lists (e.g. egg.pres) Returns ---------- lst : a list of lists of lists of values The input df reformatted as a list """ subjects = df.index.levels[0].values.tolist() lists = df.index.levels[1].values.tolist() idx = pd.IndexSlice df = df.loc[idx[subjects,lists],df.columns] lst = [df.loc[sub,:].values.tolist() for sub in subjects] return lst
Example #14
Source File: test_style.py From vnpy_crypto with MIT License | 6 votes |
def test_where_subset(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = dict(((r, c), [style1 if f(self.df.loc[row, col]) else style2]) for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns) assert result == expected
Example #15
Source File: test_style.py From recruit with Apache License 2.0 | 6 votes |
def test_applymap_subset(self): def f(x): return 'foo: bar' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.applymap(f, subset=slice_)._compute().ctx expected = {(r, c): ['foo: bar'] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected
Example #16
Source File: test_style.py From recruit with Apache License 2.0 | 6 votes |
def test_where_subset_compare_with_applymap(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' def g(x): return style1 if f(x) else style2 slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = self.df.style.applymap(g, subset=slice_)._compute().ctx assert result == expected
Example #17
Source File: style.py From vnpy_crypto with MIT License | 6 votes |
def hide_columns(self, subset): """ Hide columns from rendering. .. versionadded:: 0.23.0 Parameters ---------- subset: IndexSlice An argument to ``DataFrame.loc`` that identifies which columns are hidden. Returns ------- self : Styler """ subset = _non_reducing_slice(subset) hidden_df = self.data.loc[subset] self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns) return self # ----------------------------------------------------------------------- # A collection of "builtin" styles # -----------------------------------------------------------------------
Example #18
Source File: test_style.py From recruit with Apache License 2.0 | 6 votes |
def test_bad_apply_shape(self): df = pd.DataFrame([[1, 2], [3, 4]]) with pytest.raises(ValueError): df.style._apply(lambda x: 'x', subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: [''], subset=pd.IndexSlice[[0, 1], :]) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', '', '']) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], subset=1) with pytest.raises(ValueError): df.style._apply(lambda x: ['', '', ''], axis=1)
Example #19
Source File: test_slice.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_non_reducing_slice_on_multiindex(self): # GH 19861 dic = { ('a', 'd'): [1, 4], ('a', 'c'): [2, 3], ('b', 'c'): [3, 2], ('b', 'd'): [4, 1] } df = pd.DataFrame(dic, index=[0, 1]) idx = pd.IndexSlice slice_ = idx[:, idx['b', 'd']] tslice_ = _non_reducing_slice(slice_) result = df.loc[tslice_] expected = pd.DataFrame({('b', 'd'): [4, 1]}) tm.assert_frame_equal(result, expected)
Example #20
Source File: style.py From vnpy_crypto with MIT License | 6 votes |
def highlight_min(self, subset=None, color='yellow', axis=0): """ Highlight the minimum by shading the background Parameters ---------- subset: IndexSlice, default None a valid slice for ``data`` to limit the style application to color: str, default 'yellow' axis: int, str, or None; default 0 0 or 'index' for columnwise (default), 1 or 'columns' for rowwise, or ``None`` for tablewise Returns ------- self : Styler """ return self._highlight_handler(subset=subset, color=color, axis=axis, max_=False)
Example #21
Source File: style.py From recruit with Apache License 2.0 | 6 votes |
def hide_columns(self, subset): """ Hide columns from rendering. .. versionadded:: 0.23.0 Parameters ---------- subset : IndexSlice An argument to ``DataFrame.loc`` that identifies which columns are hidden. Returns ------- self : Styler """ subset = _non_reducing_slice(subset) hidden_df = self.data.loc[subset] self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns) return self # ----------------------------------------------------------------------- # A collection of "builtin" styles # -----------------------------------------------------------------------
Example #22
Source File: test_partial_slicing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1]) assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1]) assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1]) assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1]) assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):- 1], SLC[15:6:-1]) assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0])
Example #23
Source File: style.py From recruit with Apache License 2.0 | 6 votes |
def highlight_max(self, subset=None, color='yellow', axis=0): """ Highlight the maximum by shading the background. Parameters ---------- subset : IndexSlice, default None a valid slice for ``data`` to limit the style application to color : str, default 'yellow' axis : int, str, or None; default 0 0 or 'index' for columnwise (default), 1 or 'columns' for rowwise, or ``None`` for tablewise Returns ------- self : Styler """ return self._highlight_handler(subset=subset, color=color, axis=axis, max_=True)
Example #24
Source File: style.py From recruit with Apache License 2.0 | 6 votes |
def highlight_min(self, subset=None, color='yellow', axis=0): """ Highlight the minimum by shading the background. Parameters ---------- subset : IndexSlice, default None a valid slice for ``data`` to limit the style application to color : str, default 'yellow' axis : int, str, or None; default 0 0 or 'index' for columnwise (default), 1 or 'columns' for rowwise, or ``None`` for tablewise Returns ------- self : Styler """ return self._highlight_handler(subset=subset, color=color, axis=axis, max_=False)
Example #25
Source File: test_partial_slicing.py From vnpy_crypto with MIT License | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): assert_series_equal(ts[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1]) assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1]) assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1]) assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1]) assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):- 1], SLC[15:6:-1]) assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1], SLC[15:6:-1]) assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1], SLC[15:6:-1]) assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0])
Example #26
Source File: test_partial_slicing.py From vnpy_crypto with MIT License | 6 votes |
def test_slice_with_negative_step(self): ts = Series(np.arange(20), period_range('2014-01', periods=20, freq='M')) SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc]) assert_slices_equivalent(SLC[Period('2014-10')::-1], SLC[9::-1]) assert_slices_equivalent(SLC['2014-10'::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:Period('2014-10'):-1], SLC[:8:-1]) assert_slices_equivalent(SLC[:'2014-10':-1], SLC[:8:-1]) assert_slices_equivalent(SLC['2015-02':'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2015-02':Period('2014-10'):-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[Period('2015-02'):'2014-10':-1], SLC[13:8:-1]) assert_slices_equivalent(SLC['2014-10':'2015-02':-1], SLC[:0])
Example #27
Source File: test_indexing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) if not idx.is_integer: # For integer indices, ix and plain getitem are position-based. tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) for idx in [_mklbl('A', 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) s = Series(np.arange(20), index=idx) assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1]) assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0])
Example #28
Source File: test_indexing.py From vnpy_crypto with MIT License | 6 votes |
def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) if not idx.is_integer: # For integer indices, ix and plain getitem are position-based. tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) for idx in [_mklbl('A', 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) s = Series(np.arange(20), index=idx) assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1]) assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0])
Example #29
Source File: test_style.py From recruit with Apache License 2.0 | 6 votes |
def test_where_subset(self): # GH 17474 def f(x): return x > 0.5 style1 = 'foo: bar' style2 = 'baz: foo' slices = [pd.IndexSlice[:], pd.IndexSlice[:, ['A']], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ['A']], pd.IndexSlice[:2, ['A', 'B']]] for slice_ in slices: result = self.df.style.where(f, style1, style2, subset=slice_)._compute().ctx expected = {(r, c): [style1 if f(self.df.loc[row, col]) else style2] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns} assert result == expected
Example #30
Source File: test_style.py From vnpy_crypto with MIT License | 5 votes |
def test_set_properties_subset(self): df = pd.DataFrame({'A': [0, 1]}) result = df.style.set_properties(subset=pd.IndexSlice[0, 'A'], color='white')._compute().ctx expected = {(0, 0): ['color: white']} assert result == expected