Python pandas.get_option() Examples
The following are 30
code examples of pandas.get_option().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: test_clipboard.py From Computable with MIT License | 6 votes |
def setUpClass(cls): super(TestClipboard, cls).setUpClass() cls.data = {} cls.data['string'] = mkdf(5, 3, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['int'] = mkdf(5, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['float'] = mkdf(5, 3, data_gen_f=lambda r, c: float(r) + 0.01, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['mixed'] = DataFrame({'a': np.arange(1.0, 6.0) + 0.01, 'b': np.arange(1, 6), 'c': list('abcde')}) # Test GH-5346 max_rows = get_option('display.max_rows') cls.data['longdf'] = mkdf(max_rows+1, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data_types = list(cls.data.keys())
Example #2
Source File: test_nbinit.py From msticpy with MIT License | 6 votes |
def test_nbinit_no_params(): """Test init_notebook defaults.""" ns_dict = {} init_notebook(namespace=ns_dict, def_imports="nb") check.is_in("pd", ns_dict) check.is_in("get_ipython", ns_dict) check.is_in("Path", ns_dict) check.is_in("np", ns_dict) # Note - msticpy imports throw when exec'd from unit test # e.g. check.is_in("QueryProvider", ns_dict) fails check.is_in("WIDGET_DEFAULTS", ns_dict) check.equal(ns_dict["pd"].__name__, "pandas") check.equal(ns_dict["np"].__name__, "numpy") check.equal(pd.get_option("display.max_columns"), 50)
Example #3
Source File: parquet.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def get_engine(engine): """ return our implementation """ if engine == 'auto': engine = get_option('io.parquet.engine') if engine == 'auto': # try engines in this order try: return PyArrowImpl() except ImportError: pass try: return FastParquetImpl() except ImportError: pass if engine not in ['pyarrow', 'fastparquet']: raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") if engine == 'pyarrow': return PyArrowImpl() elif engine == 'fastparquet': return FastParquetImpl()
Example #4
Source File: test_repr_pytest.py From eland with Apache License 2.0 | 6 votes |
def test_empty_dataframe_repr_html(self): # TODO - there is a bug in 'show_dimensions' as it gets added after the last </div> # For now test without this show_dimensions = pd.get_option("display.show_dimensions") pd.set_option("display.show_dimensions", False) ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_rh = ed_ecom[ed_ecom["currency"] == "USD"]._repr_html_() pd_ecom_rh = pd_ecom[pd_ecom["currency"] == "USD"]._repr_html_() # Restore default pd.set_option("display.show_dimensions", show_dimensions) assert ed_ecom_rh == pd_ecom_rh
Example #5
Source File: test_repr_pytest.py From eland with Apache License 2.0 | 6 votes |
def test_num_rows_repr_html(self): # check setup works assert pd.get_option("display.max_rows") == 60 show_dimensions = pd.get_option("display.show_dimensions") # TODO - there is a bug in 'show_dimensions' as it gets added after the last </div> # For now test without this pd.set_option("display.show_dimensions", False) # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_repr_html(pd.get_option("display.max_rows") - 1) self.num_rows_repr_html(pd.get_option("display.max_rows")) self.num_rows_repr_html( pd.get_option("display.max_rows") + 1, pd.get_option("display.max_rows") ) # Restore default pd.set_option("display.show_dimensions", show_dimensions)
Example #6
Source File: dataframe.py From modin with Apache License 2.0 | 6 votes |
def _repr_html_(self): # pragma: no cover """repr function for rendering in Jupyter Notebooks like Pandas Dataframes. Returns: The HTML representation of a Dataframe. """ num_rows = pandas.get_option("max_rows") or 60 num_cols = pandas.get_option("max_columns") or 20 # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. result = self._build_repr_df(num_rows, num_cols)._repr_html_() if len(self.index) > num_rows or len(self.columns) > num_cols: # We split so that we insert our correct dataframe dimensions. return result.split("<p>")[ 0 ] + "<p>{0} rows x {1} columns</p>\n</div>".format( len(self.index), len(self.columns) ) else: return result
Example #7
Source File: test_repr_pytest.py From eland with Apache License 2.0 | 6 votes |
def test_num_rows_to_string(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here (compare to pandas with max_rows set) self.num_rows_to_string( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_string(10, 5, 5) self.num_rows_to_string(100, 200, 200)
Example #8
Source File: series.py From modin with Apache License 2.0 | 6 votes |
def __repr__(self): num_rows = pandas.get_option("max_rows") or 60 num_cols = pandas.get_option("max_columns") or 20 temp_df = self._build_repr_df(num_rows, num_cols) if isinstance(temp_df, pandas.DataFrame): temp_df = temp_df.iloc[:, 0] temp_str = repr(temp_df) if self.name is not None: name_str = "Name: {}, ".format(str(self.name)) else: name_str = "" if len(self.index) > num_rows: len_str = "Length: {}, ".format(len(self.index)) else: len_str = "" dtype_str = "dtype: {}".format(temp_str.rsplit("dtype: ", 1)[-1]) if len(self) == 0: return "Series([], {}{}".format(name_str, dtype_str) return temp_str.rsplit("\nName:", 1)[0] + "\n{}{}{}".format( name_str, len_str, dtype_str )
Example #9
Source File: plot_utils.py From jqfactor_analyzer with MIT License | 6 votes |
def print_table(table, name=None, fmt=None): from IPython.display import display if isinstance(table, pd.Series): table = pd.DataFrame(table) if isinstance(table, pd.DataFrame): table.columns.name = name prev_option = pd.get_option('display.float_format') if fmt is not None: pd.set_option('display.float_format', lambda x: fmt.format(x)) display(table) if fmt is not None: pd.set_option('display.float_format', prev_option)
Example #10
Source File: core.py From mars with Apache License 2.0 | 6 votes |
def _repr_html_(self): if len(self._executed_sessions) == 0: # not executed before, fall back to normal repr raise NotImplementedError corner_data = fetch_corner_data( self, session=self._executed_sessions[-1]) buf = StringIO() max_rows = pd.get_option('display.max_rows') if self.shape[0] <= max_rows: buf.write(corner_data._repr_html_()) else: with pd.option_context('display.show_dimensions', False, 'display.max_rows', corner_data.shape[0] - 1): buf.write(corner_data._repr_html_().rstrip().rstrip('</div>')) if pd.get_option('display.show_dimensions'): n_rows, n_cols = self.shape buf.write( "<p>{nrows} rows × {ncols} columns</p>\n".format( nrows=n_rows, ncols=n_cols) ) buf.write('</div>') return buf.getvalue()
Example #11
Source File: test_utils.py From mars with Apache License 2.0 | 6 votes |
def testFetchDataFrameCornerData(self): max_rows = pd.get_option('display.max_rows') try: min_rows = pd.get_option('display.min_rows') except KeyError: # pragma: no cover min_rows = max_rows sess = new_session() for row in (5, max_rows - 2, max_rows - 1, max_rows, max_rows + 1, max_rows + 2, max_rows + 3): pdf = pd.DataFrame(np.random.rand(row, 5)) df = DataFrame(pdf, chunk_size=max_rows // 2) sess.run(df, fetch=False) corner = fetch_corner_data(df, session=sess) self.assertLessEqual(corner.shape[0], max_rows + 2) corner_max_rows = max_rows if row <= max_rows else corner.shape[0] - 1 self.assertEqual(corner.to_string(max_rows=corner_max_rows, min_rows=min_rows), pdf.to_string(max_rows=max_rows, min_rows=min_rows), 'failed when row == {}'.format(row))
Example #12
Source File: test_clipboard.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def setup_class(cls): cls.data = {} cls.data['string'] = mkdf(5, 3, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['int'] = mkdf(5, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['float'] = mkdf(5, 3, data_gen_f=lambda r, c: float(r) + 0.01, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) cls.data['mixed'] = DataFrame({'a': np.arange(1.0, 6.0) + 0.01, 'b': np.arange(1, 6), 'c': list('abcde')}) # Test columns exceeding "max_colwidth" (GH8305) _cw = get_option('display.max_colwidth') + 1 cls.data['colwidth'] = mkdf(5, 3, data_gen_f=lambda *args: 'x' * _cw, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) # Test GH-5346 max_rows = get_option('display.max_rows') cls.data['longdf'] = mkdf(max_rows + 1, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) # Test for non-ascii text: GH9263 cls.data['nonascii'] = pd.DataFrame({'en': 'in English'.split(), 'es': 'en español'.split()}) # unicode round trip test for GH 13747, GH 12529 cls.data['utf8'] = pd.DataFrame({'a': ['µasd', 'Ωœ∑´'], 'b': ['øπ∆˚¬', 'œ∑´®']}) cls.data_types = list(cls.data.keys())
Example #13
Source File: common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _ensure_decoded(s): """ if we have bytes, decode them to unicode """ if isinstance(s, (np.bytes_, bytes)): s = s.decode(pd.get_option('display.encoding')) return s
Example #14
Source File: parquet.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def get_engine(engine): """ return our implementation """ if engine == 'auto': engine = get_option('io.parquet.engine') if engine == 'auto': # try engines in this order try: return PyArrowImpl() except ImportError: pass try: return FastParquetImpl() except ImportError: pass raise ImportError("Unable to find a usable engine; " "tried using: 'pyarrow', 'fastparquet'.\n" "pyarrow or fastparquet is required for parquet " "support") if engine not in ['pyarrow', 'fastparquet']: raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") if engine == 'pyarrow': return PyArrowImpl() elif engine == 'fastparquet': return FastParquetImpl()
Example #15
Source File: test_nanops.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_use_bottleneck(): if nanops._BOTTLENECK_INSTALLED: pd.set_option('use_bottleneck', True) assert pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', False) assert not pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', use_bn)
Example #16
Source File: long_path_formatter.py From astromodels with BSD 3-Clause "New" or "Revised" License | 5 votes |
def long_path_formatter(line, max_width=pd.get_option('max_colwidth')): """ If a path is longer than max_width, it substitute it with the first and last element, joined by "...". For example 'this.is.a.long.path.which.we.want.to.shorten' becomes 'this...shorten' :param line: :param max_width: :return: """ if len(line) > max_width: tokens = line.split(".") trial1 = "%s...%s" % (tokens[0], tokens[-1]) if len(trial1) > max_width: return "...%s" %(tokens[-1][-1:-(max_width-3)]) else: return trial1 else: return line
Example #17
Source File: utils.py From WindAdapter with MIT License | 5 votes |
def print_table(table, name=None, fmt=None): """ Pretty print a pandas DataFrame. Uses HTML output if running inside Jupyter Notebook, otherwise formatted text output. Parameters ---------- table : pandas.Series or pandas.DataFrame Table to pretty-print. name : str, optional Table name to display in upper left corner. fmt : str, optional Formatter to use for displaying table elements. E.g. '{0:.2f}%' for displaying 100 as '100.00%'. Restores original setting after displaying. """ if isinstance(table, pd.Series): table = pd.DataFrame(table) if fmt is not None: prev_option = pd.get_option('display.float_format') pd.set_option('display.float_format', lambda x: fmt.format(x)) if name is not None: table.columns.name = name display(table) if fmt is not None: pd.set_option('display.float_format', prev_option)
Example #18
Source File: console.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def get_console_size(): """Return console size as tuple = (width, height). Returns (None,None) in non-interactive session. """ from pandas import get_option from pandas.core import common as com display_width = get_option('display.width') # deprecated. display_height = get_option('display.max_rows') # Consider # interactive shell terminal, can detect term size # interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term # size non-interactive script, should disregard term size # in addition # width,height have default values, but setting to 'None' signals # should use Auto-Detection, But only in interactive shell-terminal. # Simple. yeah. if com.in_interactive_session(): if com.in_ipython_frontend(): # sane defaults for interactive non-shell terminal # match default for width,height in config_init from pandas.core.config import get_default_val terminal_width = get_default_val('display.width') terminal_height = get_default_val('display.max_rows') else: # pure terminal terminal_width, terminal_height = get_terminal_size() else: terminal_width, terminal_height = None, None # Note if the User sets width/Height to None (auto-detection) # and we're in a script (non-inter), this will return (None,None) # caller needs to deal. return (display_width or terminal_width, display_height or terminal_height)
Example #19
Source File: test_clipboard.py From recruit with Apache License 2.0 | 5 votes |
def df(request): data_type = request.param if data_type == 'delims': return pd.DataFrame({'a': ['"a,\t"b|c', 'd\tef´'], 'b': ['hi\'j', 'k\'\'lm']}) elif data_type == 'utf8': return pd.DataFrame({'a': ['µasd', 'Ωœ∑´'], 'b': ['øπ∆˚¬', 'œ∑´®']}) elif data_type == 'string': return mkdf(5, 3, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) elif data_type == 'long': max_rows = get_option('display.max_rows') return mkdf(max_rows + 1, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) elif data_type == 'nonascii': return pd.DataFrame({'en': 'in English'.split(), 'es': 'en español'.split()}) elif data_type == 'colwidth': _cw = get_option('display.max_colwidth') + 1 return mkdf(5, 3, data_gen_f=lambda *args: 'x' * _cw, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) elif data_type == 'mixed': return DataFrame({'a': np.arange(1.0, 6.0) + 0.01, 'b': np.arange(1, 6), 'c': list('abcde')}) elif data_type == 'float': return mkdf(5, 3, data_gen_f=lambda r, c: float(r) + 0.01, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) elif data_type == 'int': return mkdf(5, 3, data_gen_f=lambda *args: randint(2), c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) else: raise ValueError
Example #20
Source File: console.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def get_console_size(): """Return console size as tuple = (width, height). Returns (None,None) in non-interactive session. """ from pandas import get_option from pandas.core import common as com display_width = get_option('display.width') # deprecated. display_height = get_option('display.max_rows') # Consider # interactive shell terminal, can detect term size # interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term # size non-interactive script, should disregard term size # in addition # width,height have default values, but setting to 'None' signals # should use Auto-Detection, But only in interactive shell-terminal. # Simple. yeah. if com.in_interactive_session(): if com.in_ipython_frontend(): # sane defaults for interactive non-shell terminal # match default for width,height in config_init from pandas.core.config import get_default_val terminal_width = get_default_val('display.width') terminal_height = get_default_val('display.max_rows') else: # pure terminal terminal_width, terminal_height = get_terminal_size() else: terminal_width, terminal_height = None, None # Note if the User sets width/Height to None (auto-detection) # and we're in a script (non-inter), this will return (None,None) # caller needs to deal. return (display_width or terminal_width, display_height or terminal_height)
Example #21
Source File: dataframe.py From modin with Apache License 2.0 | 5 votes |
def __repr__(self): from pandas.io.formats import console num_rows = pandas.get_option("display.max_rows") or 10 num_cols = pandas.get_option("display.max_columns") or 20 if pandas.get_option("display.max_columns") is None and pandas.get_option( "display.expand_frame_repr" ): width, _ = console.get_console_size() col_counter = 0 i = 0 while col_counter < width: col_counter += len(str(self.columns[i])) + 1 i += 1 num_cols = i i = len(self.columns) - 1 col_counter = 0 while col_counter < width: col_counter += len(str(self.columns[i])) + 1 i -= 1 num_cols += len(self.columns) - i result = repr(self._build_repr_df(num_rows, num_cols)) if len(self.index) > num_rows or len(self.columns) > num_cols: # The split here is so that we don't repr pandas row lengths. return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".format( len(self.index), len(self.columns) ) else: return result
Example #22
Source File: dataframe.py From eland with Apache License 2.0 | 5 votes |
def __repr__(self): """ From pandas """ buf = StringIO() # max_rows and max_cols determine the maximum size of the pretty printed tabular # representation of the dataframe. pandas defaults are 60 and 20 respectively. # dataframes where len(df) > max_rows shows a truncated view with 10 rows shown. max_rows = pd.get_option("display.max_rows") max_cols = pd.get_option("display.max_columns") min_rows = pd.get_option("display.min_rows") if len(self) > max_rows: max_rows = min_rows show_dimensions = pd.get_option("display.show_dimensions") if pd.get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions, ) return buf.getvalue()
Example #23
Source File: dataframe.py From eland with Apache License 2.0 | 5 votes |
def _info_repr(self): """ True if the repr should show the info view. """ info_repr_option = pd.get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() )
Example #24
Source File: dataframe.py From eland with Apache License 2.0 | 5 votes |
def _repr_html_(self): """ From pandas - this is called by notebooks """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"<", 1) val = val.replace(">", r">", 1) return "<pre>" + val + "</pre>" if pd.get_option("display.notebook_repr_html"): max_rows = pd.get_option("display.max_rows") max_cols = pd.get_option("display.max_columns") min_rows = pd.get_option("display.min_rows") show_dimensions = pd.get_option("display.show_dimensions") if len(self) > max_rows: max_rows = min_rows return self.to_html( max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True, ) # set for consistency with pandas output else: return None
Example #25
Source File: test_repr_pytest.py From eland with Apache License 2.0 | 5 votes |
def test_num_rows_repr(self): self.num_rows_repr( pd.get_option("display.max_rows") - 1, pd.get_option("display.max_rows") - 1 ) self.num_rows_repr( pd.get_option("display.max_rows"), pd.get_option("display.max_rows") ) self.num_rows_repr( pd.get_option("display.max_rows") + 1, pd.get_option("display.min_rows") )
Example #26
Source File: series.py From eland with Apache License 2.0 | 5 votes |
def __repr__(self): """ Return a string representation for a particular Series. """ buf = StringIO() # max_rows and max_cols determine the maximum size of the pretty printed tabular # representation of the series. pandas defaults are 60 and 20 respectively. # series where len(series) > max_rows shows a truncated view with 10 rows shown. max_rows = pd.get_option("display.max_rows") min_rows = pd.get_option("display.min_rows") if len(self) > max_rows: max_rows = min_rows show_dimensions = pd.get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=True, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result
Example #27
Source File: test_nanops.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_use_bottleneck(): if nanops._BOTTLENECK_INSTALLED: pd.set_option('use_bottleneck', True) assert pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', False) assert not pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', use_bn)
Example #28
Source File: conftest.py From altair_pandas with BSD 3-Clause "New" or "Revised" License | 5 votes |
def with_plotting_backend(request): default = pd.get_option("plotting.backend") pd.set_option("plotting.backend", request.config.getoption("backend_name")) yield try: pd.set_option("plotting.backend", default) except ImportError: pass # matplotlib is not installed.
Example #29
Source File: common.py From vnpy_crypto with MIT License | 5 votes |
def _ensure_decoded(s): """ if we have bytes, decode them to unicode """ if isinstance(s, (np.bytes_, bytes)): s = s.decode(pd.get_option('display.encoding')) return s
Example #30
Source File: test_nanops.py From recruit with Apache License 2.0 | 5 votes |
def test_use_bottleneck(): if nanops._BOTTLENECK_INSTALLED: pd.set_option('use_bottleneck', True) assert pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', False) assert not pd.get_option('use_bottleneck') pd.set_option('use_bottleneck', use_bn)