Python pandas.option_context() Examples

The following are 30 code examples of pandas.option_context(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas , or try the search function .
Example #1
Source File: test_format.py    From recruit with Apache License 2.0 7 votes vote down vote up
def test_wide_repr(self):
        with option_context('mode.sim_interactive', True,
                            'display.show_dimensions', True,
                            'display.max_columns', 20):
            max_cols = get_option('display.max_columns')
            df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
            set_option('display.expand_frame_repr', False)
            rep_str = repr(df)

            assert "10 rows x {c} columns".format(c=max_cols - 1) in rep_str
            set_option('display.expand_frame_repr', True)
            wide_repr = repr(df)
            assert rep_str != wide_repr

            with option_context('display.width', 120):
                wider_repr = repr(df)
                assert len(wider_repr) < len(wide_repr)

        reset_option('display.expand_frame_repr') 
Example #2
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_wide_repr_multiindex_cols(self):
        with option_context('mode.sim_interactive', True,
                            'display.max_columns', 20):
            max_cols = get_option('display.max_columns')
            midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10)))
            mcols = MultiIndex.from_arrays(
                tm.rands_array(3, size=(2, max_cols - 1)))
            df = DataFrame(tm.rands_array(25, (10, max_cols - 1)),
                           index=midx, columns=mcols)
            df.index.names = ['Level 0', 'Level 1']
            set_option('display.expand_frame_repr', False)
            rep_str = repr(df)
            set_option('display.expand_frame_repr', True)
            wide_repr = repr(df)
            assert rep_str != wide_repr

        with option_context('display.width', 150, 'display.max_columns', 20):
            wider_repr = repr(df)
            assert len(wider_repr) < len(wide_repr)

        reset_option('display.expand_frame_repr') 
Example #3
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_sparse_int(self):
        # GH 13110
        s = pd.SparseSeries([0, 1, 0, 0, 1, 0], fill_value=False)

        result = repr(s)
        dtype = '' if use_32bit_repr else ', dtype=int32'
        exp = ("0    0\n1    1\n2    0\n3    0\n4    1\n"
               "5    0\ndtype: Sparse[int64, False]\nBlockIndex\n"
               "Block locations: array([1, 4]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dtype))
        assert result == exp

        with option_context("display.max_rows", 3,
                            "display.show_dimensions", False):
            result = repr(s)
            exp = ("0    0\n    ..\n5    0\n"
                   "dtype: Sparse[int64, False]\nBlockIndex\n"
                   "Block locations: array([1, 4]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dtype))
            assert result == exp 
Example #4
Source File: test_reductions.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_idxminmax_with_inf(self):
        # For numeric data with NA and Inf (GH #13595)
        s = pd.Series([0, -np.inf, np.inf, np.nan])

        assert s.idxmin() == 1
        assert np.isnan(s.idxmin(skipna=False))

        assert s.idxmax() == 2
        assert np.isnan(s.idxmax(skipna=False))

        # Using old-style behavior that treats floating point nan, -inf, and
        # +inf as missing
        with pd.option_context('mode.use_inf_as_na', True):
            assert s.idxmin() == 0
            assert np.isnan(s.idxmin(skipna=False))
            assert s.idxmax() == 0
            np.isnan(s.idxmax(skipna=False)) 
Example #5
Source File: test_analytics.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_sem(self, float_frame_with_na, datetime_frame,
                 float_frame, float_string_frame):
        alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x))
        assert_stat_op_calc('sem', alt, float_frame_with_na)
        assert_stat_op_api('sem', float_frame, float_string_frame)

        result = datetime_frame.sem(ddof=4)
        expected = datetime_frame.apply(
            lambda x: x.std(ddof=4) / np.sqrt(len(x)))
        tm.assert_almost_equal(result, expected)

        arr = np.repeat(np.random.random((1, 1000)), 1000, 0)
        result = nanops.nansem(arr, axis=0)
        assert not (result < 0).any()

        with pd.option_context('use_bottleneck', False):
            result = nanops.nansem(arr, axis=0)
            assert not (result < 0).any() 
Example #6
Source File: test_analytics.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_var_std(self, float_frame_with_na, datetime_frame, float_frame,
                     float_string_frame):
        alt = lambda x: np.var(x, ddof=1)
        assert_stat_op_calc('var', alt, float_frame_with_na)
        assert_stat_op_api('var', float_frame, float_string_frame)

        alt = lambda x: np.std(x, ddof=1)
        assert_stat_op_calc('std', alt, float_frame_with_na)
        assert_stat_op_api('std', float_frame, float_string_frame)

        result = datetime_frame.std(ddof=4)
        expected = datetime_frame.apply(lambda x: x.std(ddof=4))
        tm.assert_almost_equal(result, expected)

        result = datetime_frame.var(ddof=4)
        expected = datetime_frame.apply(lambda x: x.var(ddof=4))
        tm.assert_almost_equal(result, expected)

        arr = np.repeat(np.random.random((1, 1000)), 1000, 0)
        result = nanops.nanvar(arr, axis=0)
        assert not (result < 0).any()

        with pd.option_context('use_bottleneck', False):
            result = nanops.nanvar(arr, axis=0)
            assert not (result < 0).any() 
Example #7
Source File: test_repr.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_latex_repr(self):
        result = r"""\begin{tabular}{ll}
\toprule
{} &         0 \\
\midrule
0 &  $\alpha$ \\
1 &         b \\
2 &         c \\
\bottomrule
\end{tabular}
"""
        with option_context('display.latex.escape', False,
                            'display.latex.repr', True):
            s = Series([r'$\alpha$', 'b', 'c'])
            assert result == s._repr_latex_()

        assert s._repr_latex_() is None 
Example #8
Source File: test_repr.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_categorical_repr(self):
        a = Series(Categorical([1, 2, 3, 4]))
        exp = u("0    1\n1    2\n2    3\n3    4\n" +
                "dtype: category\nCategories (4, int64): [1, 2, 3, 4]")

        assert exp == a.__unicode__()

        a = Series(Categorical(["a", "b"] * 25))
        exp = u("0     a\n1     b\n" + "     ..\n" + "48    a\n49    b\n" +
                "Length: 50, dtype: category\nCategories (2, object): [a, b]")
        with option_context("display.max_rows", 5):
            assert exp == repr(a)

        levs = list("abcdefghijklmnopqrstuvwxyz")
        a = Series(Categorical(["a", "b"], categories=levs, ordered=True))
        exp = u("0    a\n1    b\n" + "dtype: category\n"
                "Categories (26, object): [a < b < c < d ... w < x < y < z]")
        assert exp == a.__unicode__() 
Example #9
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_sparse_mi_max_row(self):
        idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0),
                                         ('C', 0), ('C', 1), ('C', 2)])
        s = pd.Series([1, np.nan, np.nan, 3, np.nan, np.nan],
                      index=idx).to_sparse()
        result = repr(s)
        dfm = self.dtype_format_for_platform
        exp = ("A  0    1.0\n   1    NaN\nB  0    NaN\n"
               "C  0    3.0\n   1    NaN\n   2    NaN\n"
               "dtype: Sparse[float64, nan]\nBlockIndex\n"
               "Block locations: array([0, 3]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dfm))
        assert result == exp

        with option_context("display.max_rows", 3,
                            "display.show_dimensions", False):
            # GH 13144
            result = repr(s)
            exp = ("A  0    1.0\n       ... \nC  2    NaN\n"
                   "dtype: Sparse[float64, nan]\nBlockIndex\n"
                   "Block locations: array([0, 3]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dfm))
            assert result == exp 
Example #10
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_show_null_counts(self):

        df = DataFrame(1, columns=range(10), index=range(10))
        df.iloc[1, 1] = np.nan

        def check(null_counts, result):
            buf = StringIO()
            df.info(buf=buf, null_counts=null_counts)
            assert ('non-null' in buf.getvalue()) is result

        with option_context('display.max_info_rows', 20,
                            'display.max_info_columns', 20):
            check(None, True)
            check(True, True)
            check(False, False)

        with option_context('display.max_info_rows', 5,
                            'display.max_info_columns', 5):
            check(None, False)
            check(True, False)
            check(False, False) 
Example #11
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_repr_truncation(self):
        max_len = 20
        with option_context("display.max_colwidth", max_len):
            df = DataFrame({'A': np.random.randn(10),
                            'B': [tm.rands(np.random.randint(
                                max_len - 1, max_len + 1)) for i in range(10)
            ]})
            r = repr(df)
            r = r[r.find('\n') + 1:]

            adj = fmt._get_adjustment()

            for line, value in lzip(r.split('\n'), df['B']):
                if adj.len(value) + 1 > max_len:
                    assert '...' in line
                else:
                    assert '...' not in line

        with option_context("display.max_colwidth", 999999):
            assert '...' not in repr(df)

        with option_context("display.max_colwidth", max_len + 2):
            assert '...' not in repr(df) 
Example #12
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_expand_frame_repr(self):
        df_small = DataFrame('hello', [0], [0])
        df_wide = DataFrame('hello', [0], lrange(10))
        df_tall = DataFrame('hello', lrange(30), lrange(5))

        with option_context('mode.sim_interactive', True):
            with option_context('display.max_columns', 10, 'display.width', 20,
                                'display.max_rows', 20,
                                'display.show_dimensions', True):
                with option_context('display.expand_frame_repr', True):
                    assert not has_truncated_repr(df_small)
                    assert not has_expanded_repr(df_small)
                    assert not has_truncated_repr(df_wide)
                    assert has_expanded_repr(df_wide)
                    assert has_vertically_truncated_repr(df_tall)
                    assert has_expanded_repr(df_tall)

                with option_context('display.expand_frame_repr', False):
                    assert not has_truncated_repr(df_small)
                    assert not has_expanded_repr(df_small)
                    assert not has_horizontally_truncated_repr(df_wide)
                    assert not has_expanded_repr(df_wide)
                    assert has_vertically_truncated_repr(df_tall)
                    assert not has_expanded_repr(df_tall) 
Example #13
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_str_max_colwidth(self):
        # GH 7856
        df = pd.DataFrame([{'a': 'foo',
                            'b': 'bar',
                            'c': 'uncomfortably long line with lots of stuff',
                            'd': 1}, {'a': 'foo',
                                      'b': 'bar',
                                      'c': 'stuff',
                                      'd': 1}])
        df.set_index(['a', 'b', 'c'])
        assert str(df) == (
            '     a    b                                           c  d\n'
            '0  foo  bar  uncomfortably long line with lots of stuff  1\n'
            '1  foo  bar                                       stuff  1')
        with option_context('max_colwidth', 20):
            assert str(df) == ('     a    b                    c  d\n'
                               '0  foo  bar  uncomfortably lo...  1\n'
                               '1  foo  bar                stuff  1') 
Example #14
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_truncate_with_different_dtypes(self):

        # 11594, 12045
        # when truncated the dtypes of the splits can differ

        # 11594
        import datetime
        s = Series([datetime.datetime(2012, 1, 1)] * 10 +
                   [datetime.datetime(1012, 1, 2)] + [
            datetime.datetime(2012, 1, 3)] * 10)

        with pd.option_context('display.max_rows', 8):
            result = str(s)
            assert 'object' in result

        # 12045
        df = DataFrame({'text': ['some words'] + [None] * 9})

        with pd.option_context('display.max_rows', 8,
                               'display.max_columns', 3):
            result = str(df)
            assert 'None' in result
            assert 'NaN' not in result 
Example #15
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_wide_repr_multiindex(self):
        with option_context('mode.sim_interactive', True,
                            'display.max_columns', 20):
            midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10)))
            max_cols = get_option('display.max_columns')
            df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)),
                           index=midx)
            df.index.names = ['Level 0', 'Level 1']
            set_option('display.expand_frame_repr', False)
            rep_str = repr(df)
            set_option('display.expand_frame_repr', True)
            wide_repr = repr(df)
            assert rep_str != wide_repr

            with option_context('display.width', 150):
                wider_repr = repr(df)
                assert len(wider_repr) < len(wide_repr)

            for line in wide_repr.splitlines()[1::13]:
                assert 'Level 0 Level 1' in line

        reset_option('display.expand_frame_repr') 
Example #16
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_wide_repr_named(self):
        with option_context('mode.sim_interactive', True,
                            'display.max_columns', 20):
            max_cols = get_option('display.max_columns')
            df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
            df.index.name = 'DataFrame Index'
            set_option('display.expand_frame_repr', False)

            rep_str = repr(df)
            set_option('display.expand_frame_repr', True)
            wide_repr = repr(df)
            assert rep_str != wide_repr

            with option_context('display.width', 150):
                wider_repr = repr(df)
                assert len(wider_repr) < len(wide_repr)

            for line in wide_repr.splitlines()[1::13]:
                assert 'DataFrame Index' in line

        reset_option('display.expand_frame_repr') 
Example #17
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_wide_repr_unicode(self):
        with option_context('mode.sim_interactive', True,
                            'display.max_columns', 20):
            max_cols = 20
            df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
            set_option('display.expand_frame_repr', False)
            rep_str = repr(df)
            set_option('display.expand_frame_repr', True)
            wide_repr = repr(df)
            assert rep_str != wide_repr

            with option_context('display.width', 150):
                wider_repr = repr(df)
                assert len(wider_repr) < len(wide_repr)

        reset_option('display.expand_frame_repr') 
Example #18
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_repr_html_wide_multiindex_cols(self):
        max_cols = 20

        mcols = MultiIndex.from_product([np.arange(max_cols // 2),
                                         ['foo', 'bar']],
                                        names=['first', 'second'])
        df = DataFrame(tm.rands_array(25, size=(10, len(mcols))),
                       columns=mcols)
        reg_repr = df._repr_html_()
        assert '...' not in reg_repr

        mcols = MultiIndex.from_product((np.arange(1 + (max_cols // 2)),
                                         ['foo', 'bar']),
                                        names=['first', 'second'])
        df = DataFrame(tm.rands_array(25, size=(10, len(mcols))),
                       columns=mcols)
        with option_context('display.max_rows', 60, 'display.max_columns', 20):
            assert '...' in df._repr_html_() 
Example #19
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_repr_html_long(self):
        with option_context('display.max_rows', 60):
            max_rows = get_option('display.max_rows')
            h = max_rows - 1
            df = DataFrame({'A': np.arange(1, 1 + h),
                            'B': np.arange(41, 41 + h)})
            reg_repr = df._repr_html_()
            assert '..' not in reg_repr
            assert str(41 + max_rows // 2) in reg_repr

            h = max_rows + 1
            df = DataFrame({'A': np.arange(1, 1 + h),
                            'B': np.arange(41, 41 + h)})
            long_repr = df._repr_html_()
            assert '..' in long_repr
            assert str(41 + max_rows // 2) not in long_repr
            assert u('{h} rows ').format(h=h) in long_repr
            assert u('2 columns') in long_repr 
Example #20
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_repr_html_float(self):
        with option_context('display.max_rows', 60):

            max_rows = get_option('display.max_rows')
            h = max_rows - 1
            df = DataFrame({'idx': np.linspace(-10, 10, h),
                            'A': np.arange(1, 1 + h),
                            'B': np.arange(41, 41 + h)}).set_index('idx')
            reg_repr = df._repr_html_()
            assert '..' not in reg_repr
            assert '<td>{val}</td>'.format(val=str(40 + h)) in reg_repr

            h = max_rows + 1
            df = DataFrame({'idx': np.linspace(-10, 10, h),
                            'A': np.arange(1, 1 + h),
                            'B': np.arange(41, 41 + h)}).set_index('idx')
            long_repr = df._repr_html_()
            assert '..' in long_repr
            assert '<td>{val}</td>'.format(val='31') not in long_repr
            assert u('{h} rows ').format(h=h) in long_repr
            assert u('2 columns') in long_repr 
Example #21
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_info_repr(self):
        # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect
        # the terminal size to ensure that we try to print something "too big"
        term_width, term_height = get_terminal_size()

        max_rows = 60
        max_cols = 20 + (max(term_width, 80) - 80) // 4
        # Long
        h, w = max_rows + 1, max_cols - 1
        df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)})
        assert has_vertically_truncated_repr(df)
        with option_context('display.large_repr', 'info'):
            assert has_info_repr(df)

        # Wide
        h, w = max_rows - 1, max_cols + 1
        df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)})
        assert has_horizontally_truncated_repr(df)
        with option_context('display.large_repr', 'info',
                            'display.max_columns', max_cols):
            assert has_info_repr(df) 
Example #22
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_info_repr_html(self):
        max_rows = 60
        max_cols = 20
        # Long
        h, w = max_rows + 1, max_cols - 1
        df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)})
        assert r'&lt;class' not in df._repr_html_()
        with option_context('display.large_repr', 'info'):
            assert r'&lt;class' in df._repr_html_()

        # Wide
        h, w = max_rows - 1, max_cols + 1
        df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)})
        assert '<class' not in df._repr_html_()
        with option_context('display.large_repr', 'info',
                            'display.max_columns', max_cols):
            assert '&lt;class' in df._repr_html_() 
Example #23
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_format_explicit(self):
        test_sers = gen_series_formatting()
        with option_context("display.max_rows", 4,
                            "display.show_dimensions", False):
            res = repr(test_sers['onel'])
            exp = '0     a\n1     a\n     ..\n98    a\n99    a\ndtype: object'
            assert exp == res
            res = repr(test_sers['twol'])
            exp = ('0     ab\n1     ab\n      ..\n98    ab\n99    ab\ndtype:'
                   ' object')
            assert exp == res
            res = repr(test_sers['asc'])
            exp = ('0         a\n1        ab\n      ...  \n4     abcde\n5'
                   '    abcdef\ndtype: object')
            assert exp == res
            res = repr(test_sers['desc'])
            exp = ('5    abcdef\n4     abcde\n      ...  \n1        ab\n0'
                   '         a\ndtype: object')
            assert exp == res 
Example #24
Source File: test_printing.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_publishes(self):

        df = pd.DataFrame({"A": [1, 2]})
        objects = [df['A'], df, df]  # dataframe / series
        expected_keys = [
            {'text/plain', 'application/vnd.dataresource+json'},
            {'text/plain', 'text/html', 'application/vnd.dataresource+json'},
        ]

        opt = pd.option_context('display.html.table_schema', True)
        for obj, expected in zip(objects, expected_keys):
            with opt:
                formatted = self.display_formatter.format(obj)
            assert set(formatted[0].keys()) == expected

        with_latex = pd.option_context('display.latex.repr', True)

        with opt, with_latex:
            formatted = self.display_formatter.format(obj)

        expected = {'text/plain', 'text/html', 'text/latex',
                    'application/vnd.dataresource+json'}
        assert set(formatted[0].keys()) == expected 
Example #25
Source File: test_printing.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_enable_data_resource_formatter(self):
        # GH 10491
        formatters = self.display_formatter.formatters
        mimetype = 'application/vnd.dataresource+json'

        with pd.option_context('display.html.table_schema', True):
            assert 'application/vnd.dataresource+json' in formatters
            assert formatters[mimetype].enabled

        # still there, just disabled
        assert 'application/vnd.dataresource+json' in formatters
        assert not formatters[mimetype].enabled

        # able to re-set
        with pd.option_context('display.html.table_schema', True):
            assert 'application/vnd.dataresource+json' in formatters
            assert formatters[mimetype].enabled
            # smoke test that it works
            self.display_formatter.format(cf) 
Example #26
Source File: test_parquet.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_options_get_engine(fp, pa):
    assert isinstance(get_engine('pyarrow'), PyArrowImpl)
    assert isinstance(get_engine('fastparquet'), FastParquetImpl)

    with pd.option_context('io.parquet.engine', 'pyarrow'):
        assert isinstance(get_engine('auto'), PyArrowImpl)
        assert isinstance(get_engine('pyarrow'), PyArrowImpl)
        assert isinstance(get_engine('fastparquet'), FastParquetImpl)

    with pd.option_context('io.parquet.engine', 'fastparquet'):
        assert isinstance(get_engine('auto'), FastParquetImpl)
        assert isinstance(get_engine('pyarrow'), PyArrowImpl)
        assert isinstance(get_engine('fastparquet'), FastParquetImpl)

    with pd.option_context('io.parquet.engine', 'auto'):
        assert isinstance(get_engine('auto'), PyArrowImpl)
        assert isinstance(get_engine('pyarrow'), PyArrowImpl)
        assert isinstance(get_engine('fastparquet'), FastParquetImpl) 
Example #27
Source File: core.py    From mars with Apache License 2.0 6 votes vote down vote up
def _repr_html_(self):
        if len(self._executed_sessions) == 0:
            # not executed before, fall back to normal repr
            raise NotImplementedError

        corner_data = fetch_corner_data(
            self, session=self._executed_sessions[-1])

        buf = StringIO()
        max_rows = pd.get_option('display.max_rows')
        if self.shape[0] <= max_rows:
            buf.write(corner_data._repr_html_())
        else:
            with pd.option_context('display.show_dimensions', False,
                                   'display.max_rows', corner_data.shape[0] - 1):
                buf.write(corner_data._repr_html_().rstrip().rstrip('</div>'))
            if pd.get_option('display.show_dimensions'):
                n_rows, n_cols = self.shape
                buf.write(
                    "<p>{nrows} rows × {ncols} columns</p>\n".format(
                        nrows=n_rows, ncols=n_cols)
                )
            buf.write('</div>')

        return buf.getvalue() 
Example #28
Source File: test_format.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_sparse_max_row(self):
        s = pd.Series([1, np.nan, np.nan, 3, np.nan]).to_sparse()
        result = repr(s)
        dfm = self.dtype_format_for_platform
        exp = ("0    1.0\n1    NaN\n2    NaN\n3    3.0\n"
               "4    NaN\ndtype: float64\nBlockIndex\n"
               "Block locations: array([0, 3]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dfm))
        assert result == exp

        with option_context("display.max_rows", 3):
            # GH 10560
            result = repr(s)
            exp = ("0    1.0\n    ... \n4    NaN\n"
                   "Length: 5, dtype: float64\nBlockIndex\n"
                   "Block locations: array([0, 3]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dfm))
            assert result == exp 
Example #29
Source File: test_format.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_sparse_mi_max_row(self):
        idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0),
                                         ('C', 0), ('C', 1), ('C', 2)])
        s = pd.Series([1, np.nan, np.nan, 3, np.nan, np.nan],
                      index=idx).to_sparse()
        result = repr(s)
        dfm = self.dtype_format_for_platform
        exp = ("A  0    1.0\n   1    NaN\nB  0    NaN\n"
               "C  0    3.0\n   1    NaN\n   2    NaN\n"
               "dtype: float64\nBlockIndex\n"
               "Block locations: array([0, 3]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dfm))
        assert result == exp

        with option_context("display.max_rows", 3,
                            "display.show_dimensions", False):
            # GH 13144
            result = repr(s)
            exp = ("A  0    1.0\n       ... \nC  2    NaN\n"
                   "dtype: float64\nBlockIndex\n"
                   "Block locations: array([0, 3]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dfm))
            assert result == exp 
Example #30
Source File: test_format.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_sparse_bool(self):
        # GH 13110
        s = pd.SparseSeries([True, False, False, True, False, False],
                            fill_value=False)
        result = repr(s)
        dtype = '' if use_32bit_repr else ', dtype=int32'
        exp = ("0     True\n1    False\n2    False\n"
               "3     True\n4    False\n5    False\n"
               "dtype: bool\nBlockIndex\n"
               "Block locations: array([0, 3]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dtype))
        assert result == exp

        with option_context("display.max_rows", 3):
            result = repr(s)
            exp = ("0     True\n     ...  \n5    False\n"
                   "Length: 6, dtype: bool\nBlockIndex\n"
                   "Block locations: array([0, 3]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dtype))
            assert result == exp