Python pandas.Int64Index() Examples
The following are 30
code examples of pandas.Int64Index().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: descriptors.py From psst with MIT License | 6 votes |
def setattributeindex(self, instance, value): bus_name = instance.bus.index instance.branch['F_BUS'] = instance.branch['F_BUS'].apply(lambda x: value[bus_name.get_loc(x)]) instance.branch['T_BUS'] = instance.branch['T_BUS'].apply(lambda x: value[bus_name.get_loc(x)]) instance.gen['GEN_BUS'] = instance.gen['GEN_BUS'].apply(lambda x: value[bus_name.get_loc(x)]) try: instance.load.columns = [v for b, v in zip(instance.bus_name.isin(instance.load.columns), value) if b == True] except ValueError: instance.load.columns = value except AttributeError: instance.load = pd.DataFrame(0, index=range(0, 1), columns=value, dtype='float') instance.bus.index = value if isinstance(instance.bus_name, pd.RangeIndex) or isinstance(instance.bus_name, pd.Int64Index): logger.debug('Forcing string types for all bus names') instance.bus_name = ['Bus{}'.format(b) for b in instance.bus_name]
Example #2
Source File: test_range.py From vnpy_crypto with MIT License | 6 votes |
def test_join_left(self): # Join with Int64Index other = Int64Index(np.arange(25, 14, -1)) res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) eres = self.index eridx = np.array([-1, -1, -1, -1, -1, -1, -1, -1, 9, 7], dtype=np.intp) assert isinstance(res, RangeIndex) tm.assert_index_equal(res, eres) assert lidx is None tm.assert_numpy_array_equal(ridx, eridx) # Join withRangeIndex other = Int64Index(np.arange(25, 14, -1)) res, lidx, ridx = self.index.join(other, how='left', return_indexers=True) assert isinstance(res, RangeIndex) tm.assert_index_equal(res, eres) assert lidx is None tm.assert_numpy_array_equal(ridx, eridx)
Example #3
Source File: test_multi.py From vnpy_crypto with MIT License | 6 votes |
def test_rangeindex_fallback_coercion_bug(self): # GH 12893 foo = pd.DataFrame(np.arange(100).reshape((10, 10))) bar = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat({'foo': foo.stack(), 'bar': bar.stack()}, axis=1) df.index.names = ['fizz', 'buzz'] str(df) expected = pd.DataFrame({'bar': np.arange(100), 'foo': np.arange(100)}, index=pd.MultiIndex.from_product( [range(10), range(10)], names=['fizz', 'buzz'])) tm.assert_frame_equal(df, expected, check_like=True) result = df.index.get_level_values('fizz') expected = pd.Int64Index(np.arange(10), name='fizz').repeat(10) tm.assert_index_equal(result, expected) result = df.index.get_level_values('buzz') expected = pd.Int64Index(np.tile(np.arange(10), 10), name='buzz') tm.assert_index_equal(result, expected)
Example #4
Source File: test_astype.py From recruit with Apache License 2.0 | 6 votes |
def test_astype_conversion(self): # GH#13149, GH#13209 idx = PeriodIndex(['2016-05-16', 'NaT', NaT, np.NaN], freq='D') result = idx.astype(object) expected = Index([Period('2016-05-16', freq='D')] + [Period(NaT, freq='D')] * 3, dtype='object') tm.assert_index_equal(result, expected) result = idx.astype(np.int64) expected = Int64Index([16937] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) result = idx.astype(str) expected = Index(str(x) for x in idx) tm.assert_index_equal(result, expected) idx = period_range('1990', '2009', freq='A') result = idx.astype('i8') tm.assert_index_equal(result, Index(idx.asi8)) tm.assert_numpy_array_equal(result.values, idx.asi8)
Example #5
Source File: test_arithmetic.py From mars with Apache License 2.0 | 6 votes |
def testNot(self): data1 = pd.DataFrame(np.random.rand(10, 10) > 0.5, index=[0, 10, 2, 3, 4, 5, 6, 7, 8, 9], columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) df1 = from_pandas(data1, chunk_size=(5, 10)) df2 = ~df1 # test df2's index and columns pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df1.columns_value.to_pandas()) self.assertIsInstance(df2.index_value.value, IndexValue.Int64Index) self.assertEqual(df2.shape, (10, 10)) df2 = df2.tiles() df1 = get_tiled(df1) self.assertEqual(df2.chunk_shape, (2, 1)) for c2, c1 in zip(df2.chunks, df1.chunks): self.assertIsInstance(c2.op, DataFrameNot) self.assertEqual(len(c2.inputs), 1) # compare with input chunks self.assertEqual(c2.index, c1.index) pd.testing.assert_index_equal(c2.columns_value.to_pandas(), c1.columns_value.to_pandas()) pd.testing.assert_index_equal(c2.index_value.to_pandas(), c1.index_value.to_pandas())
Example #6
Source File: test_integrity.py From recruit with Apache License 2.0 | 6 votes |
def test_values_multiindex_periodindex(): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2])
Example #7
Source File: test_integrity.py From recruit with Apache License 2.0 | 6 votes |
def test_rangeindex_fallback_coercion_bug(): # GH 12893 foo = pd.DataFrame(np.arange(100).reshape((10, 10))) bar = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat({'foo': foo.stack(), 'bar': bar.stack()}, axis=1) df.index.names = ['fizz', 'buzz'] str(df) expected = pd.DataFrame({'bar': np.arange(100), 'foo': np.arange(100)}, index=pd.MultiIndex.from_product( [range(10), range(10)], names=['fizz', 'buzz'])) tm.assert_frame_equal(df, expected, check_like=True) result = df.index.get_level_values('fizz') expected = pd.Int64Index(np.arange(10), name='fizz').repeat(10) tm.assert_index_equal(result, expected) result = df.index.get_level_values('buzz') expected = pd.Int64Index(np.tile(np.arange(10), 10), name='buzz') tm.assert_index_equal(result, expected)
Example #8
Source File: test_arithmetic.py From mars with Apache License 2.0 | 6 votes |
def testAbs(self): data1 = pd.DataFrame(np.random.rand(10, 10), index=[0, 10, 2, 3, 4, 5, 6, 7, 8, 9], columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) df1 = from_pandas(data1, chunk_size=(5, 10)) df2 = df1.abs() # test df2's index and columns pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df1.columns_value.to_pandas()) self.assertIsInstance(df2.index_value.value, IndexValue.Int64Index) self.assertEqual(df2.shape, (10, 10)) df2 = df2.tiles() df1 = get_tiled(df1) self.assertEqual(df2.chunk_shape, (2, 1)) for c2, c1 in zip(df2.chunks, df1.chunks): self.assertIsInstance(c2.op, DataFrameAbs) self.assertEqual(len(c2.inputs), 1) # compare with input chunks self.assertEqual(c2.index, c1.index) pd.testing.assert_index_equal(c2.columns_value.to_pandas(), c1.columns_value.to_pandas()) pd.testing.assert_index_equal(c2.index_value.to_pandas(), c1.index_value.to_pandas())
Example #9
Source File: sort_values.py From mars with Apache License 2.0 | 6 votes |
def __call__(self, a): assert self.axis == 0 if self.ignore_index: index_value = parse_index(pd.RangeIndex(a.shape[0])) else: if isinstance(a.index_value.value, IndexValue.RangeIndex): index_value = parse_index(pd.Int64Index([])) else: index_value = a.index_value if a.ndim == 2: return self.new_dataframe([a], shape=a.shape, dtypes=a.dtypes, index_value=index_value, columns_value=a.columns_value) else: return self.new_series([a], shape=a.shape, dtype=a.dtype, index_value=index_value, name=a.name)
Example #10
Source File: utils.py From mars with Apache License 2.0 | 6 votes |
def infer_index_value(left_index_value, right_index_value): from .core import IndexValue if isinstance(left_index_value.value, IndexValue.RangeIndex) and \ isinstance(right_index_value.value, IndexValue.RangeIndex): if left_index_value.value.slice == right_index_value.value.slice: return left_index_value return parse_index(pd.Int64Index([]), left_index_value, right_index_value) # when left index and right index is identical, and both of them are elements unique, # we can infer that the out index should be identical also if left_index_value.is_unique and right_index_value.is_unique and \ left_index_value.key == right_index_value.key: return left_index_value left_index = left_index_value.to_pandas() right_index = right_index_value.to_pandas() out_index = pd.Index([], dtype=find_common_type([left_index.dtype, right_index.dtype])) return parse_index(out_index, left_index_value, right_index_value)
Example #11
Source File: test_base.py From vnpy_crypto with MIT License | 5 votes |
def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how='outer') # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union( left_index.astype(object)) tm.assert_index_equal(result, expected)
Example #12
Source File: test_range.py From vnpy_crypto with MIT License | 5 votes |
def test_join_non_unique(self): other = Index([4, 4, 3, 3]) res, lidx, ridx = self.index.join(other, return_indexers=True) eres = Int64Index([0, 2, 4, 4, 6, 8, 10, 12, 14, 16, 18]) elidx = np.array([0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp) eridx = np.array([-1, -1, 0, 1, -1, -1, -1, -1, -1, -1, -1], dtype=np.intp) tm.assert_index_equal(res, eres) tm.assert_numpy_array_equal(lidx, elidx) tm.assert_numpy_array_equal(ridx, eridx)
Example #13
Source File: test_range.py From vnpy_crypto with MIT License | 5 votes |
def test_take_fill_value(self): # GH 12631 idx = pd.RangeIndex(1, 4, name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.Int64Index([2, 1, 3], name='xxx') tm.assert_index_equal(result, expected) # fill_value msg = "Unable to fill values because RangeIndex cannot contain NA" with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -1]), fill_value=True) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.Int64Index([2, 1, 3], name='xxx') tm.assert_index_equal(result, expected) msg = "Unable to fill values because RangeIndex cannot contain NA" with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5]))
Example #14
Source File: test_range.py From vnpy_crypto with MIT License | 5 votes |
def test_union(self): RI = RangeIndex I64 = Int64Index cases = [(RI(0, 10, 1), RI(0, 10, 1), RI(0, 10, 1)), (RI(0, 10, 1), RI(5, 20, 1), RI(0, 20, 1)), (RI(0, 10, 1), RI(10, 20, 1), RI(0, 20, 1)), (RI(0, -10, -1), RI(0, -10, -1), RI(0, -10, -1)), (RI(0, -10, -1), RI(-10, -20, -1), RI(-19, 1, 1)), (RI(0, 10, 2), RI(1, 10, 2), RI(0, 10, 1)), (RI(0, 11, 2), RI(1, 12, 2), RI(0, 12, 1)), (RI(0, 21, 4), RI(-2, 24, 4), RI(-2, 24, 2)), (RI(0, -20, -2), RI(-1, -21, -2), RI(-19, 1, 1)), (RI(0, 100, 5), RI(0, 100, 20), RI(0, 100, 5)), (RI(0, -100, -5), RI(5, -100, -20), RI(-95, 10, 5)), (RI(0, -11, -1), RI(1, -12, -4), RI(-11, 2, 1)), (RI(0), RI(0), RI(0)), (RI(0, -10, -2), RI(0), RI(0, -10, -2)), (RI(0, 100, 2), RI(100, 150, 200), RI(0, 102, 2)), (RI(0, -100, -2), RI(-100, 50, 102), RI(-100, 4, 2)), (RI(0, -100, -1), RI(0, -50, -3), RI(-99, 1, 1)), (RI(0, 1, 1), RI(5, 6, 10), RI(0, 6, 5)), (RI(0, 10, 5), RI(-5, -6, -20), RI(-5, 10, 5)), (RI(0, 3, 1), RI(4, 5, 1), I64([0, 1, 2, 4])), (RI(0, 10, 1), I64([]), RI(0, 10, 1)), (RI(0), I64([1, 5, 6]), I64([1, 5, 6]))] for idx1, idx2, expected in cases: res1 = idx1.union(idx2) res2 = idx2.union(idx1) res3 = idx1._int64index.union(idx2) tm.assert_index_equal(res1, expected, exact=True) tm.assert_index_equal(res2, expected, exact=True) tm.assert_index_equal(res3, expected)
Example #15
Source File: test_range.py From vnpy_crypto with MIT License | 5 votes |
def test_union_noncomparable(self): from datetime import datetime, timedelta # corner case, non-Int64Index now = datetime.now() other = Index([now + timedelta(i) for i in range(4)], dtype=object) result = self.index.union(other) expected = Index(np.concatenate((self.index, other))) tm.assert_index_equal(result, expected) result = other.union(self.index) expected = Index(np.concatenate((other, self.index))) tm.assert_index_equal(result, expected)
Example #16
Source File: test_range.py From vnpy_crypto with MIT License | 5 votes |
def test_append(self): # GH16212 RI = RangeIndex I64 = Int64Index F64 = Float64Index OI = Index cases = [([RI(1, 12, 5)], RI(1, 12, 5)), ([RI(0, 6, 4)], RI(0, 6, 4)), ([RI(1, 3), RI(3, 7)], RI(1, 7)), ([RI(1, 5, 2), RI(5, 6)], RI(1, 6, 2)), ([RI(1, 3, 2), RI(4, 7, 3)], RI(1, 7, 3)), ([RI(-4, 3, 2), RI(4, 7, 2)], RI(-4, 7, 2)), ([RI(-4, -8), RI(-8, -12)], RI(0, 0)), ([RI(-4, -8), RI(3, -4)], RI(0, 0)), ([RI(-4, -8), RI(3, 5)], RI(3, 5)), ([RI(-4, -2), RI(3, 5)], I64([-4, -3, 3, 4])), ([RI(-2,), RI(3, 5)], RI(3, 5)), ([RI(2,), RI(2)], I64([0, 1, 0, 1])), ([RI(2,), RI(2, 5), RI(5, 8, 4)], RI(0, 6)), ([RI(2,), RI(3, 5), RI(5, 8, 4)], I64([0, 1, 3, 4, 5])), ([RI(-2, 2), RI(2, 5), RI(5, 8, 4)], RI(-2, 6)), ([RI(3,), I64([-1, 3, 15])], I64([0, 1, 2, -1, 3, 15])), ([RI(3,), F64([-1, 3.1, 15.])], F64([0, 1, 2, -1, 3.1, 15.])), ([RI(3,), OI(['a', None, 14])], OI([0, 1, 2, 'a', None, 14])), ([RI(3, 1), OI(['a', None, 14])], OI(['a', None, 14])) ] for indices, expected in cases: result = indices[0].append(indices[1:]) tm.assert_index_equal(result, expected, exact=True) if len(indices) == 2: # Append single item rather than list result2 = indices[0].append(indices[1]) tm.assert_index_equal(result2, expected, exact=True)
Example #17
Source File: test_resample.py From vnpy_crypto with MIT License | 5 votes |
def test_fails_on_no_datetime_index(self): index_names = ('Int64Index', 'Index', 'Float64Index', 'MultiIndex') index_funcs = (tm.makeIntIndex, tm.makeUnicodeIndex, tm.makeFloatIndex, lambda m: tm.makeCustomIndex(m, 2)) n = 2 for name, func in zip(index_names, index_funcs): index = func(n) df = DataFrame({'a': np.random.randn(n)}, index=index) with tm.assert_raises_regex(TypeError, "Only valid with " "DatetimeIndex, TimedeltaIndex " "or PeriodIndex, but got an " "instance of %r" % name): df.groupby(TimeGrouper('D'))
Example #18
Source File: test_resample.py From vnpy_crypto with MIT License | 5 votes |
def test_consistency_with_window(self): # consistent return values with window df = self.frame expected = pd.Int64Index([1, 2, 3], name='A') result = df.groupby('A').resample('2s').mean() assert result.index.nlevels == 2 tm.assert_index_equal(result.index.levels[0], expected) result = df.groupby('A').rolling(20).mean() assert result.index.nlevels == 2 tm.assert_index_equal(result.index.levels[0], expected)
Example #19
Source File: test_base.py From vnpy_crypto with MIT License | 5 votes |
def test_reindex_no_type_preserve_target_empty_mi(self): index = pd.Index(list('abc')) result = index.reindex(pd.MultiIndex( [pd.Int64Index([]), pd.Float64Index([])], [[], []]))[0] assert result.levels[0].dtype.type == np.int64 assert result.levels[1].dtype.type == np.float64
Example #20
Source File: test_pivot.py From vnpy_crypto with MIT License | 5 votes |
def test_categorical_pivot_index_ordering(self, observed): # GH 8731 df = pd.DataFrame({'Sales': [100, 120, 220], 'Month': ['January', 'January', 'January'], 'Year': [2013, 2014, 2013]}) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] df['Month'] = df['Month'].astype('category').cat.set_categories(months) result = df.pivot_table(values='Sales', index='Month', columns='Year', dropna=observed, aggfunc='sum') expected_columns = pd.Int64Index([2013, 2014], name='Year') expected_index = pd.CategoricalIndex(['January'], categories=months, ordered=False, name='Month') expected = pd.DataFrame([[320, 120]], index=expected_index, columns=expected_columns) if not observed: result = result.dropna().astype(np.int64) tm.assert_frame_equal(result, expected)
Example #21
Source File: test_coercion.py From vnpy_crypto with MIT License | 5 votes |
def test_insert_index_int64(self, insert, coerced_val, coerced_dtype): obj = pd.Int64Index([1, 2, 3, 4]) assert obj.dtype == np.int64 exp = pd.Index([1, coerced_val, 2, 3, 4]) self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
Example #22
Source File: test_function.py From vnpy_crypto with MIT License | 5 votes |
def test_pipe_args(): # Test passing args to the pipe method of DataFrameGroupBy. # Issue #17871 df = pd.DataFrame({'group': ['A', 'A', 'B', 'B', 'C'], 'x': [1.0, 2.0, 3.0, 2.0, 5.0], 'y': [10.0, 100.0, 1000.0, -100.0, -1000.0]}) def f(dfgb, arg1): return (dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False) .groupby(dfgb.grouper)) def g(dfgb, arg2): return dfgb.sum() / dfgb.sum().sum() + arg2 def h(df, arg3): return df.x + df.y - arg3 result = (df .groupby('group') .pipe(f, 0) .pipe(g, 10) .pipe(h, 100)) # Assert the results here index = pd.Index(['A', 'B', 'C'], name='group') expected = pd.Series([-79.5160891089, -78.4839108911, -80], index=index) tm.assert_series_equal(expected, result) # test SeriesGroupby.pipe ser = pd.Series([1, 1, 2, 2, 3, 3]) result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count()) expected = pd.Series([4, 8, 12], index=pd.Int64Index([1, 2, 3])) tm.assert_series_equal(result, expected)
Example #23
Source File: test_generic.py From vnpy_crypto with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #24
Source File: test_arithmetic.py From mars with Apache License 2.0 | 5 votes |
def testOnSameDataFrame(self): data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) data = self.to_boolean_if_needed(data) df = from_pandas(data, chunk_size=3) df2 = self.func(df, df) # test df2's index and columns pd.testing.assert_index_equal(df2.columns_value.to_pandas(), self.func(data, data).columns) self.assertFalse(df2.columns_value.should_be_monotonic) self.assertIsInstance(df2.index_value.value, IndexValue.Int64Index) self.assertFalse(df2.index_value.should_be_monotonic) pd.testing.assert_index_equal(df2.index_value.to_pandas(), pd.Int64Index([])) self.assertEqual(df2.index_value.key, df.index_value.key) self.assertEqual(df2.columns_value.key, df.columns_value.key) self.assertEqual(df2.shape[1], 10) df2 = df2.tiles() df = get_tiled(df) self.assertEqual(df2.chunk_shape, df.chunk_shape) for c in df2.chunks: self.assertIsInstance(c.op, self.op) self.assertEqual(len(c.inputs), 2) # test the left side self.assertIs(c.inputs[0], df.cix[c.index].data) # test the right side self.assertIs(c.inputs[1], df.cix[c.index].data)
Example #25
Source File: test_arithmetic.py From mars with Apache License 2.0 | 5 votes |
def testBothOneChunk(self): # no axis is monotonic, but 1 chunk for all axes data1 = pd.DataFrame(np.random.rand(10, 10), index=[0, 10, 2, 3, 4, 5, 6, 7, 8, 9], columns=[4, 1, 3, 2, 10, 5, 9, 8, 6, 7]) data1 = self.to_boolean_if_needed(data1) df1 = from_pandas(data1, chunk_size=10) data2 = pd.DataFrame(np.random.rand(10, 10), index=[11, 1, 2, 5, 7, 6, 8, 9, 10, 3], columns=[5, 9, 12, 3, 11, 10, 6, 4, 1, 2]) data2 = self.to_boolean_if_needed(data2) df2 = from_pandas(data2, chunk_size=10) df3 = self.func(df1, df2) # test df3's index and columns pd.testing.assert_index_equal(df3.columns_value.to_pandas(), self.func(data1, data2).columns) self.assertTrue(df3.columns_value.should_be_monotonic) self.assertIsInstance(df3.index_value.value, IndexValue.Int64Index) self.assertTrue(df3.index_value.should_be_monotonic) pd.testing.assert_index_equal(df3.index_value.to_pandas(), pd.Int64Index([])) self.assertNotEqual(df3.index_value.key, df1.index_value.key) self.assertNotEqual(df3.index_value.key, df2.index_value.key) self.assertEqual(df3.shape[1], 12) # columns is recorded, so we can get it df3 = df3.tiles() df1, df2 = get_tiled(df1), get_tiled(df2) self.assertEqual(df3.chunk_shape, (1, 1)) for c in df3.chunks: self.assertIsInstance(c.op, self.op) self.assertEqual(len(c.inputs), 2) # test the left side self.assertIs(c.inputs[0], df1.chunks[0].data) # test the right side self.assertIs(c.inputs[1], df2.chunks[0].data)
Example #26
Source File: test_utils.py From mars with Apache License 2.0 | 5 votes |
def testParseIndex(self): index = pd.Int64Index([]) parsed_index = parse_index(index) self.assertIsInstance(parsed_index.value, IndexValue.Int64Index) pd.testing.assert_index_equal(index, parsed_index.to_pandas()) index = pd.Int64Index([1, 2]) parsed_index = parse_index(index) # not parse data self.assertIsInstance(parsed_index.value, IndexValue.Int64Index) with self.assertRaises(AssertionError): pd.testing.assert_index_equal(index, parsed_index.to_pandas()) parsed_index = parse_index(index, store_data=True) # parse data self.assertIsInstance(parsed_index.value, IndexValue.Int64Index) pd.testing.assert_index_equal(index, parsed_index.to_pandas()) index = pd.RangeIndex(0, 10, 3) parsed_index = parse_index(index) self.assertIsInstance(parsed_index.value, IndexValue.RangeIndex) pd.testing.assert_index_equal(index, parsed_index.to_pandas()) index = pd.MultiIndex.from_arrays([[0, 1], ['a', 'b'], ['X', 'Y']]) parsed_index = parse_index(index) # not parse data self.assertIsInstance(parsed_index.value, IndexValue.MultiIndex) with self.assertRaises(AssertionError): pd.testing.assert_index_equal(index, parsed_index.to_pandas()) parsed_index = parse_index(index, store_data=True) # parse data self.assertIsInstance(parsed_index.value, IndexValue.MultiIndex) pd.testing.assert_index_equal(index, parsed_index.to_pandas())
Example #27
Source File: test_constructors.py From vnpy_crypto with MIT License | 5 votes |
def test_constructor_empty(self): # GH 17248 c = Categorical([]) expected = Index([]) tm.assert_index_equal(c.categories, expected) c = Categorical([], categories=[1, 2, 3]) expected = pd.Int64Index([1, 2, 3]) tm.assert_index_equal(c.categories, expected)
Example #28
Source File: parquet.py From vnpy_crypto with MIT License | 5 votes |
def _validate_write_lt_070(self, df): # Compatibility shim for pyarrow < 0.7.0 # TODO: Remove in pandas 0.23.0 from pandas.core.indexes.multi import MultiIndex if isinstance(df.index, MultiIndex): msg = ( "Multi-index DataFrames are only supported " "with pyarrow >= 0.7.0" ) raise ValueError(msg) # Validate index if not isinstance(df.index, Int64Index): msg = ( "pyarrow < 0.7.0 does not support serializing {} for the " "index; you can .reset_index() to make the index into " "column(s), or install the latest version of pyarrow or " "fastparquet." ) raise ValueError(msg.format(type(df.index))) if not df.index.equals(RangeIndex(len(df))): raise ValueError( "pyarrow < 0.7.0 does not support serializing a non-default " "index; you can .reset_index() to make the index into " "column(s), or install the latest version of pyarrow or " "fastparquet." ) if df.index.name is not None: raise ValueError( "pyarrow < 0.7.0 does not serialize indexes with a name; you " "can set the index.name to None or install the latest version " "of pyarrow or fastparquet." )
Example #29
Source File: test_utils.py From climpred with MIT License | 5 votes |
def test_int64_converted_to_cftime(): """Tests the xr.Int64Index is converted to xr.CFTimeIndex.""" inits = np.arange(1990, 2000) da = xr.DataArray(np.random.rand(len(inits)), dims='init', coords=[inits]) new_inits = convert_time_index(da, 'init', '') assert isinstance(new_inits['init'].to_index(), xr.CFTimeIndex)
Example #30
Source File: test_setops.py From vnpy_crypto with MIT License | 5 votes |
def test_union(self): i1 = timedelta_range('1day', periods=5) i2 = timedelta_range('3day', periods=5) result = i1.union(i2) expected = timedelta_range('1day', periods=7) tm.assert_index_equal(result, expected) i1 = Int64Index(np.arange(0, 20, 2)) i2 = TimedeltaIndex(start='1 day', periods=10, freq='D') i1.union(i2) # Works i2.union(i1) # Fails with "AttributeError: can't set attribute"