Python sklearn.utils.validation.NotFittedError() Examples
The following are 9
code examples of sklearn.utils.validation.NotFittedError().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.utils.validation
, or try the search function
.
Example #1
Source File: komd.py From MKLpy with GNU General Public License v3.0 | 6 votes |
def predict(self, X): """Perform classification on samples in X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Matrix containing new samples Returns ------- y_pred : array, shape = [n_samples] The value of prediction for each sample """ if self.is_fitted == False: raise NotFittedError("This KOMD instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.") X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C") if self.multiclass_ == True: return self.cls.predict(X) return np.array([self.classes_[1] if p >=0 else self.classes_[0] for p in self.decision_function(X)])
Example #2
Source File: komd.py From MKLpy with GNU General Public License v3.0 | 5 votes |
def decision_function(self, X): """Distance of the samples in X to the separating hyperplane. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- Z : array-like, shape = [n_samples, 1] Returns the decision function of the samples. """ if self.is_fitted == False: raise NotFittedError("This KOMD instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.") X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C") if self.multiclass_ == True: return self.cls.decision_function(X) Kf = self.__kernel_definition__() YY = matrix(np.diag(list(matrix(self.Y)))) ker_matrix = matrix(Kf(X,self.X).astype(np.double)) z = ker_matrix*YY*self.gamma z = z-self.bias return np.array(list(z))
Example #3
Source File: srm.py From hypertools with MIT License | 5 votes |
def transform(self, X, y=None): """Use the model to transform matrix to Shared Response space Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject note that number of voxels and samples can vary across subjects y : not used (as it is unsupervised learning) Returns ------- s : list of 2D arrays, element i has shape=[features_i, samples_i] Shared responses from input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") s = [None] * len(X) for subject in range(len(X)): s[subject] = self.w_[subject].T.dot(X[subject]) return s
Example #4
Source File: srm.py From hypertools with MIT License | 5 votes |
def transform(self, X, y=None): """Use the model to transform data to the Shared Response subspace Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject. y : not used Returns ------- s : list of 2D arrays, element i has shape=[features_i, samples_i] Shared responses from input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") s = [None] * len(X) for subject in range(len(X)): s[subject] = self.w_[subject].T.dot(X[subject]) return s
Example #5
Source File: rsrm.py From brainiak with Apache License 2.0 | 5 votes |
def transform(self, X): """Use the model to transform new data to Shared Response space Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, timepoints_i] Each element in the list contains the fMRI data of one subject. Returns ------- r : list of 2D arrays, element i has shape=[features_i, timepoints_i] Shared responses from input data (X) s : list of 2D arrays, element i has shape=[voxels_i, timepoints_i] Individual data obtained from fitting model to input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") r = [None] * len(X) s = [None] * len(X) for subject in range(len(X)): if X[subject] is not None: r[subject], s[subject] = self._transform_new_data(X[subject], subject) return r, s
Example #6
Source File: rsrm.py From brainiak with Apache License 2.0 | 5 votes |
def transform_subject(self, X): """Transform a new subject using the existing model Parameters ---------- X : 2D array, shape=[voxels, timepoints] The fMRI data of the new subject. Returns ------- w : 2D array, shape=[voxels, features] Orthogonal mapping `W_{new}` for new subject s : 2D array, shape=[voxels, timepoints] Individual term `S_{new}` for new subject """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of TRs in the subject if X.shape[1] != self.r_.shape[1]: raise ValueError("The number of timepoints(TRs) does not match the" "one in the model.") s = np.zeros_like(X) for i in range(self.n_iter): w = self._update_transform_subject(X, s, self.r_) s = self._shrink(X - w.dot(self.r_), self.lam) return w, s
Example #7
Source File: sssrm.py From brainiak with Apache License 2.0 | 5 votes |
def transform(self, X, y=None): """Use the model to transform matrix to Shared Response space Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject note that number of voxels and samples can vary across subjects. y : not used as it only applies the mappings Returns ------- s : list of 2D arrays, element i has shape=[features_i, samples_i] Shared responses from input data (X) """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") s = [None] * len(X) for subject in range(len(X)): s[subject] = self.w_[subject].T.dot(X[subject]) return s
Example #8
Source File: sssrm.py From brainiak with Apache License 2.0 | 5 votes |
def predict(self, X): """Classify the output for given data Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject The number of voxels should be according to each subject at the moment of training the model. Returns ------- p: list of arrays, element i has shape=[samples_i] Predictions for each data sample. """ # Check if the model exist if hasattr(self, 'w_') is False: raise NotFittedError("The model fit has not been run yet.") # Check the number of subjects if len(X) != len(self.w_): raise ValueError("The number of subjects does not match the one" " in the model.") X_shared = self.transform(X) p = [None] * len(X_shared) for subject in range(len(X_shared)): sumexp, _, exponents = utils.sumexp_stable( self.theta_.T.dot(X_shared[subject]) + self.bias_) p[subject] = self.classes_[ (exponents / sumexp[np.newaxis, :]).argmax(axis=0)] return p
Example #9
Source File: _utils.py From hmmlearn with BSD 3-Clause "New" or "Revised" License | 5 votes |
def check_is_fitted(estimator, attribute): if not hasattr(estimator, attribute): raise NotFittedError( "This %s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method." % type(estimator).__name__)