Python sklearn.manifold.SpectralEmbedding() Examples
The following are 9
code examples of sklearn.manifold.SpectralEmbedding().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.manifold
, or try the search function
.
Example #1
Source File: utils.py From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License | 7 votes |
def learn_manifold(manifold_type, feats, n_components=2): if manifold_type == 'tsne': feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats) elif manifold_type == 'isomap': feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats) elif manifold_type == 'mds': feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats) elif manifold_type == 'spectral': feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats) else: raise Exception('wrong maniford type!') # methods = ['standard', 'ltsa', 'hessian', 'modified'] # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred) return feats_fitted
Example #2
Source File: utils.py From timeception with GNU General Public License v3.0 | 7 votes |
def learn_manifold(manifold_type, feats, n_components=2): if manifold_type == 'tsne': feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats) elif manifold_type == 'isomap': feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats) elif manifold_type == 'mds': feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats) elif manifold_type == 'spectral': feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats) else: raise Exception('wrong maniford type!') # methods = ['standard', 'ltsa', 'hessian', 'modified'] # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred) return feats_fitted
Example #3
Source File: lens.py From sakmapper with MIT License | 6 votes |
def apply_lens(df, lens='pca', dist='euclidean', n_dim=2, **kwargs): """ input: N x F dataframe of observations output: N x n_dim image of input data under lens function """ if n_dim != 2: raise 'error: image of data set must be two-dimensional' if dist not in ['euclidean', 'correlation']: raise 'error: only euclidean and correlation distance metrics are supported' if lens == 'pca' and dist != 'euclidean': raise 'error: PCA requires the use of euclidean distance metric' if lens == 'pca': df_lens = pd.DataFrame(decomposition.PCA(n_components=n_dim, **kwargs).fit_transform(df), df.index) elif lens == 'mds': D = metrics.pairwise.pairwise_distances(df, metric=dist) df_lens = pd.DataFrame(manifold.MDS(n_components=n_dim, **kwargs).fit_transform(D), df.index) elif lens == 'neighbor': D = metrics.pairwise.pairwise_distances(df, metric=dist) df_lens = pd.DataFrame(manifold.SpectralEmbedding(n_components=n_dim, **kwargs).fit_transform(D), df.index) else: raise 'error: only PCA, MDS, neighborhood lenses are supported' return df_lens
Example #4
Source File: utils.py From videograph with GNU General Public License v3.0 | 6 votes |
def learn_manifold(manifold_type, feats, n_components=2): if manifold_type == 'tsne': feats_fitted = manifold.TSNE(n_components=n_components, random_state=0).fit_transform(feats) elif manifold_type == 'isomap': feats_fitted = manifold.Isomap(n_components=n_components).fit_transform(feats) elif manifold_type == 'mds': feats_fitted = manifold.MDS(n_components=n_components).fit_transform(feats) elif manifold_type == 'spectral': feats_fitted = manifold.SpectralEmbedding(n_components=n_components).fit_transform(feats) else: raise Exception('wrong maniford type!') # methods = ['standard', 'ltsa', 'hessian', 'modified'] # feats_fitted = manifold.LocallyLinearEmbedding(n_components=n_components, method=methods[0]).fit_transform(pred) return feats_fitted
Example #5
Source File: test_classifier.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def classifiers(self): graph_builder = LabelCooccurrenceGraphBuilder(weighted=True, include_self_edges=False) param_dicts = { 'GraphFactorization': dict(epoch=1), 'GraRep': dict(Kstep=2), 'HOPE': dict(), 'LaplacianEigenmaps': dict(), 'LINE': dict(epoch=1, order=1), 'LLE': dict(), } if not (sys.version_info[0] == 2 or platform.architecture()[0] == '32bit'): for embedding in OpenNetworkEmbedder._EMBEDDINGS: if embedding == 'LLE': dimension = 3 else: dimension = 4 yield EmbeddingClassifier( OpenNetworkEmbedder(copy(graph_builder), embedding, dimension, 'add', True, param_dicts[embedding]), LinearRegression(), MLkNN(k=2) ) yield EmbeddingClassifier( SKLearnEmbedder(SpectralEmbedding(n_components=2)), LinearRegression(), MLkNN(k=2) ) EmbeddingClassifier( CLEMS(metrics.accuracy_score, True), LinearRegression(), MLkNN(k=2), True )
Example #6
Source File: test_manifold.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.manifold.LocallyLinearEmbedding, manifold.LocallyLinearEmbedding) self.assertIs(df.manifold.Isomap, manifold.Isomap) self.assertIs(df.manifold.MDS, manifold.MDS) self.assertIs(df.manifold.SpectralEmbedding, manifold.SpectralEmbedding) self.assertIs(df.manifold.TSNE, manifold.TSNE)
Example #7
Source File: testing_and_visualisation.py From ImageSetCleaner with GNU General Public License v3.0 | 4 votes |
def see_iso_map(bottlenecks, labels, suptitle=None): """ :param bottlenecks: :param labels: :param suptitle: String to add as plot suptitles :return: Nothing, will just plot a scatter plot to show the distribution of our data after dimensionality reduction. """ n_samples, n_features = bottlenecks.shape n_neighbors = 25 n_components = 2 start_index_outlier = np.where(labels == 1)[0][0] alpha_inlier = 0.25 B_iso = manifold.Isomap(n_neighbors, n_components).fit_transform(bottlenecks) B_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(bottlenecks) B_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method='standard').fit_transform(bottlenecks) B_spec = manifold.SpectralEmbedding(n_components=n_components, random_state=42, eigen_solver='arpack').fit_transform(bottlenecks) plt.figure() plt.subplot(221) plt.scatter(B_iso[:start_index_outlier, 0], B_iso[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier) plt.scatter(B_iso[start_index_outlier:, 0], B_iso[start_index_outlier:, 1], marker='^', c='k') plt.title("Isomap projection") plt.subplot(222) inlier_scatter = plt.scatter(B_lle[:start_index_outlier, 0], B_lle[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier) outlier_scatter = plt.scatter(B_lle[start_index_outlier:, 0], B_lle[start_index_outlier:, 1], marker='^', c='k') plt.legend([inlier_scatter, outlier_scatter], ['Inliers', 'Outliers'], loc='lower left') plt.title("Locally Linear Embedding") plt.subplot(223) plt.scatter(B_pca[:start_index_outlier, 0], B_pca[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier) plt.scatter(B_pca[start_index_outlier:, 0], B_pca[start_index_outlier:, 1], marker='^', c='k') plt.title("Principal Components projection") plt.subplot(224) plt.scatter(B_spec[:start_index_outlier, 0], B_spec[:start_index_outlier, 1], marker='o', c='b', alpha=alpha_inlier) plt.scatter(B_spec[start_index_outlier:, 0], B_spec[start_index_outlier:, 1], marker='^', c='k') plt.title("Spectral embedding") if suptitle: plt.suptitle(suptitle)
Example #8
Source File: spectral.py From altanalyze with Apache License 2.0 | 4 votes |
def component_layout( data, n_components, component_labels, dim, metric="euclidean", metric_kwds={} ): """Provide a layout relating the separate connected components. This is done by taking the centroid of each component and then performing a spectral embedding of the centroids. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. Returns ------- component_embedding: array of shape (n_components, dim) The ``dim``-dimensional embedding of the ``n_components``-many connected components. """ component_centroids = np.empty((n_components, data.shape[1]), dtype=np.float64) for label in range(n_components): component_centroids[label] = data[component_labels == label].mean(axis=0) distance_matrix = pairwise_distances( component_centroids, metric=metric, **metric_kwds ) affinity_matrix = np.exp(-distance_matrix ** 2) component_embedding = SpectralEmbedding( n_components=dim, affinity="precomputed" ).fit_transform(affinity_matrix) component_embedding /= component_embedding.max() return component_embedding
Example #9
Source File: spectral.py From altanalyze with Apache License 2.0 | 4 votes |
def component_layout( data, n_components, component_labels, dim, metric="euclidean", metric_kwds={} ): """Provide a layout relating the separate connected components. This is done by taking the centroid of each component and then performing a spectral embedding of the centroids. Parameters ---------- data: array of shape (n_samples, n_features) The source data -- required so we can generate centroids for each connected component of the graph. n_components: int The number of distinct components to be layed out. component_labels: array of shape (n_samples) For each vertex in the graph the label of the component to which the vertex belongs. dim: int The chosen embedding dimension. metric: string or callable (optional, default 'euclidean') The metric used to measure distances among the source data points. metric_kwds: dict (optional, default {}) Keyword arguments to be passed to the metric function. Returns ------- component_embedding: array of shape (n_components, dim) The ``dim``-dimensional embedding of the ``n_components``-many connected components. """ component_centroids = np.empty((n_components, data.shape[1]), dtype=np.float64) for label in range(n_components): component_centroids[label] = data[component_labels == label].mean(axis=0) distance_matrix = pairwise_distances( component_centroids, metric=metric, **metric_kwds ) affinity_matrix = np.exp(-distance_matrix ** 2) component_embedding = SpectralEmbedding( n_components=dim, affinity="precomputed" ).fit_transform(affinity_matrix) component_embedding /= component_embedding.max() return component_embedding