Python PIL.ImageEnhance.Brightness() Examples
The following are 30
code examples of PIL.ImageEnhance.Brightness().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL.ImageEnhance
, or try the search function
.
Example #1
Source File: transforms_tools.py From deep-image-retrieval with BSD 3-Clause "New" or "Revised" License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #2
Source File: lomolive.py From wx-fancy-pic with MIT License | 6 votes |
def lomoize (image,darkness,saturation): (width,height) = image.size max = width if height > width: max = height mask = Image.open("./lomolive/lomomask.jpg").resize((max,max)) left = round((max - width) / 2) upper = round((max - height) / 2) mask = mask.crop((left,upper,left+width,upper + height)) # mask = Image.open('mask_l.png') darker = ImageEnhance.Brightness(image).enhance(darkness) saturated = ImageEnhance.Color(image).enhance(saturation) lomoized = Image.composite(saturated,darker,mask) return lomoized
Example #3
Source File: generator.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 6 votes |
def modifyImageBscc(imageData, brightness, sharpness, contrast, color): """Update with brightness, sharpness, contrast and color.""" brightnessMod = ImageEnhance.Brightness(imageData) imageData = brightnessMod.enhance(brightness) sharpnessMod = ImageEnhance.Sharpness(imageData) imageData = sharpnessMod.enhance(sharpness) contrastMod = ImageEnhance.Contrast(imageData) imageData = contrastMod.enhance(contrast) colorMod = ImageEnhance.Color(imageData) imageData = colorMod.enhance(color) return imageData
Example #4
Source File: functional.py From ACoL with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #5
Source File: functional.py From Global-Second-order-Pooling-Convolutional-Networks with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #6
Source File: CuteR.py From CuteR with GNU General Public License v3.0 | 6 votes |
def produce(txt,img,ver=5,err_crt = qrcode.constants.ERROR_CORRECT_H,bri = 1.0, cont = 1.0,\ colourful = False, rgba = (0,0,0,255),pixelate = False): """Produce QR code :txt: QR text :img: Image path / Image object :ver: QR version :err_crt: QR error correct :bri: Brightness enhance :cont: Contrast enhance :colourful: If colourful mode :rgba: color to replace black :pixelate: pixelate :returns: list of produced image """ if type(img) is Image.Image: pass elif type(img) is str: img = Image.open(img) else: return [] frames = [produce_impl(txt,frame.copy(),ver,err_crt,bri,cont,colourful,rgba,pixelate) for frame in ImageSequence.Iterator(img)] return frames
Example #7
Source File: functional.py From SPG with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #8
Source File: transforms.py From ACAN with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #9
Source File: functional.py From Deep-Exemplar-based-Colorization with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #10
Source File: neural_style_transfer.py From Style_Migration_For_Artistic_Font_With_CNN with MIT License | 6 votes |
def save_img(fname, image, image_enhance=False): # 图像可以增强 image = Image.fromarray(image) if image_enhance: # 亮度增强 enh_bri = ImageEnhance.Brightness(image) brightness = 1.2 image = enh_bri.enhance(brightness) # 色度增强 enh_col = ImageEnhance.Color(image) color = 1.2 image = enh_col.enhance(color) # 锐度增强 enh_sha = ImageEnhance.Sharpness(image) sharpness = 1.2 image = enh_sha.enhance(sharpness) imsave(fname, image) return
Example #11
Source File: transforms.py From self-supervised-depth-completion with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #12
Source File: extractor.py From imago-forensics with MIT License | 6 votes |
def ela(filename, output_path): print "****ELA is in BETA****" if magic.from_file(filename, mime=True) == "image/jpeg": quality_level = 85 tmp_img = os.path.join(output_path,os.path.basename(filename)+".tmp.jpg") ela = os.path.join(output_path,os.path.basename(filename)+".ela.jpg") image = Image.open(filename) image.save(tmp_img, 'JPEG', quality=quality_level) tmp_img_file = Image.open(tmp_img) ela_image = ImageChops.difference(image, tmp_img_file) extrema = ela_image.getextrema() max_diff = max([ex[1] for ex in extrema]) scale = 255.0/max_diff ela_image = ImageEnhance.Brightness(ela_image).enhance(scale) ela_image.save(ela) os.remove(tmp_img) else: print "ELA works only with JPEG" #Modified version of a gist by: https://github.com/erans
Example #13
Source File: datasets.py From ICIAR2018 with MIT License | 6 votes |
def __getitem__(self, index): im, xpatch, ypatch, rotation, flip, enhance = np.unravel_index(index, self.shape) with Image.open(self.names[im]) as img: extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride) patch = extractor.extract_patch((xpatch, ypatch)) if rotation != 0: patch = patch.rotate(rotation * 90) if flip != 0: patch = patch.transpose(Image.FLIP_LEFT_RIGHT) if enhance != 0: factors = np.random.uniform(.5, 1.5, 3) patch = ImageEnhance.Color(patch).enhance(factors[0]) patch = ImageEnhance.Contrast(patch).enhance(factors[1]) patch = ImageEnhance.Brightness(patch).enhance(factors[2]) label = self.labels[self.names[im]] return transforms.ToTensor()(patch), label
Example #14
Source File: image.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def apply_brightness_shift(x, brightness): """Performs a brightness shift. # Arguments x: Input tensor. Must be 3D. brightness: Float. The new brightness value. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if ImageEnhance is None: raise ImportError('Using brightness shifts requires PIL. ' 'Install PIL or Pillow.') x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) x = imgenhancer_Brightness.enhance(brightness) x = img_to_array(x) return x
Example #15
Source File: transform.py From SegAN with MIT License | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL.Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL.Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #16
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #17
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #18
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #19
Source File: gui.py From superpaper with MIT License | 6 votes |
def resize_and_bitmap(self, fname, size, enhance_color=False): """Take filename of an image and resize and center crop it to size.""" try: pil = resize_to_fill(Image.open(fname), size, quality="fast") except UnidentifiedImageError: msg = ("Opening image '%s' failed with PIL.UnidentifiedImageError." "It could be corrupted or is of foreign type.") % fname sp_logging.G_LOGGER.info(msg) # show_message_dialog(msg) black_bmp = wx.Bitmap.FromRGBA(size[0], size[1], red=0, green=0, blue=0, alpha=255) if enhance_color: return (black_bmp, black_bmp) return black_bmp img = wx.Image(pil.size[0], pil.size[1]) img.SetData(pil.convert("RGB").tobytes()) if enhance_color: converter = ImageEnhance.Color(pil) pilenh_bw = converter.enhance(0.25) brightns = ImageEnhance.Brightness(pilenh_bw) pilenh = brightns.enhance(0.45) imgenh = wx.Image(pil.size[0], pil.size[1]) imgenh.SetData(pilenh.convert("RGB").tobytes()) return (img.ConvertToBitmap(), imgenh.ConvertToBitmap()) return img.ConvertToBitmap()
Example #20
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #21
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #22
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #23
Source File: image_functions.py From MAX-Framework with Apache License 2.0 | 6 votes |
def adjust_brightness(img, brightness_factor): """Adjust brightness of an Image. Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image while 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
Example #24
Source File: deepfry.py From FlameCogs with MIT License | 6 votes |
def _fry(img): e = ImageEnhance.Sharpness(img) img = e.enhance(100) e = ImageEnhance.Contrast(img) img = e.enhance(100) e = ImageEnhance.Brightness(img) img = e.enhance(.27) r, b, g = img.split() e = ImageEnhance.Brightness(r) r = e.enhance(4) e = ImageEnhance.Brightness(g) g = e.enhance(1.75) e = ImageEnhance.Brightness(b) b = e.enhance(.6) img = Image.merge('RGB', (r, g, b)) e = ImageEnhance.Brightness(img) img = e.enhance(1.5) temp = BytesIO() temp.name = 'deepfried.png' img.save(temp) temp.seek(0) return temp
Example #25
Source File: image.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def random_brightness(x, brightness_range): """Perform a random brightness shift. # Arguments x: Input tensor. Must be 3D. brightness_range: Tuple of floats; brightness range. channel_axis: Index of axis for channels in the input tensor. # Returns Numpy image tensor. # Raises ValueError if `brightness_range` isn't a tuple. """ if len(brightness_range) != 2: raise ValueError('`brightness_range should be tuple or list of two floats. ' 'Received arg: ', brightness_range) x = array_to_img(x) x = imgenhancer_Brightness = ImageEnhance.Brightness(x) u = np.random.uniform(brightness_range[0], brightness_range[1]) x = imgenhancer_Brightness.enhance(u) x = img_to_array(x) return x
Example #26
Source File: multimedia.py From chepy with GNU General Public License v3.0 | 6 votes |
def image_brightness(self, factor: int, extension: str = "png"): """Change image brightness Args: factor (int): Factor to increase the brightness by extension (str, optional): File extension of loaded image. Defaults to "png" Returns: Chepy: The Chepy object. """ image = Image.open(self._load_as_file()) image = self._force_rgb(image) fh = io.BytesIO() enhanced = ImageEnhance.Brightness(image).enhance(factor) enhanced.save(fh, extension) self.state = fh.getvalue() return self
Example #27
Source File: functional.py From fast-reid with Apache License 2.0 | 5 votes |
def brightness(pil_img, level, *args): level = float_parameter(sample_level(level), 1.8) + 0.1 return ImageEnhance.Brightness(pil_img).enhance(level) # operation that overlaps with ImageNet-C's test set
Example #28
Source File: datasets.py From ICIAR2018 with MIT License | 5 votes |
def __getitem__(self, index): im, rotation, flip, enhance = np.unravel_index(index, self.shape) with Image.open(self.names[im]) as img: if flip != 0: img = img.transpose(Image.FLIP_LEFT_RIGHT) if rotation != 0: img = img.rotate(rotation * 90) if enhance != 0: factors = np.random.uniform(.5, 1.5, 3) img = ImageEnhance.Color(img).enhance(factors[0]) img = ImageEnhance.Contrast(img).enhance(factors[1]) img = ImageEnhance.Brightness(img).enhance(factors[2]) extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride) patches = extractor.extract_patches() label = self.labels[self.names[im]] b = torch.zeros((len(patches), 3, PATCH_SIZE, PATCH_SIZE)) for i in range(len(patches)): b[i] = transforms.ToTensor()(patches[i]) return b, label
Example #29
Source File: drawTriangles.py From Delaunay_Triangulation with ISC License | 5 votes |
def brightenImage(im, value): enhancer = ImageEnhance.Brightness(im) im = enhancer.enhance(value) return im
Example #30
Source File: trans.py From ocr.pytorch with MIT License | 5 votes |
def tranfun(self, image): image = getpilimage(image) bri = ImageEnhance.Brightness(image) return bri.enhance(random.uniform(self.lower, self.upper))