Python utils.get_logger() Examples
The following are 15
code examples of utils.get_logger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: model.py From medical-entity-recognition with Apache License 2.0 | 6 votes |
def __init__(self, batch_size, epoch_num, hidden_dim, embeddings, dropout_keep, optimizer, lr, clip_grad, tag2label, vocab, shuffle, model_path, summary_path, log_path, result_path, CRF=True, update_embedding=True): self.batch_size = batch_size self.epoch_num = epoch_num self.hidden_dim = hidden_dim self.embeddings = embeddings self.dropout_keep_prob = dropout_keep self.optimizer = optimizer self.lr = lr self.clip_grad = clip_grad self.tag2label = tag2label self.num_tags = len(tag2label) self.vocab = vocab # word2id self.shuffle = shuffle self.model_path = model_path self.summary_path = summary_path self.logger = get_logger(log_path) self.result_path = result_path self.CRF = CRF self.update_embedding = update_embedding
Example #2
Source File: base_model.py From neural_sequence_labeling with MIT License | 6 votes |
def _initialize_config(self): # create folders and logger if not os.path.exists(self.cfg["checkpoint_path"]): os.makedirs(self.cfg["checkpoint_path"]) if not os.path.exists(self.cfg["summary_path"]): os.makedirs(self.cfg["summary_path"]) self.logger = get_logger(os.path.join(self.cfg["checkpoint_path"], "log.txt")) # load dictionary dict_data = load_dataset(self.cfg["vocab"]) self.word_dict, self.char_dict = dict_data["word_dict"], dict_data["char_dict"] self.tag_dict = dict_data["tag_dict"] del dict_data self.word_vocab_size = len(self.word_dict) self.char_vocab_size = len(self.char_dict) self.tag_vocab_size = len(self.tag_dict) self.rev_word_dict = dict([(idx, word) for word, idx in self.word_dict.items()]) self.rev_char_dict = dict([(idx, char) for char, idx in self.char_dict.items()]) self.rev_tag_dict = dict([(idx, tag) for tag, idx in self.tag_dict.items()])
Example #3
Source File: main.py From pynlp with MIT License | 6 votes |
def evaluate_line(): config = load_config(FLAGS.config_file) logger = get_logger(FLAGS.log_file) # limit GPU memory tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True with open(FLAGS.map_file, "rb") as f: char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f) with tf.Session(config=tf_config) as sess: model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger, False) while True: # try: # line = input("请输入测试句子:") # result = ckpt.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag) # print(result) # except Exception as e: # logger.info(e) line = input("请输入测试句子:") result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag) print(result)
Example #4
Source File: train_ppo_model.py From latent-treelstm with MIT License | 5 votes |
def make_path_preparations(args): seed = hash(str(args)) % 1000_000 torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # logger path args_hash = str(hash(str(args))) if not os.path.exists(args.logs_path): os.makedirs(args.logs_path) logger = get_logger(f"{args.logs_path}/l{args_hash}.log") print(f"{args.logs_path}/l{args_hash}.log") logger.info(f"args: {str(args)}") logger.info(f"args hash: {args_hash}") logger.info(f"random seed: {seed}") # model path args.model_dir = f"{args.model_dir}/m{args_hash}" if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) logger.info(f"checkpoint's dir is: {args.model_dir}") # tensorboard path tensorboard_path = f"{args.tensorboard_path}/t{args_hash}" if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) summary_writer = dict() summary_writer["train"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'train')) summary_writer["valid"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'valid')) return logger, summary_writer
Example #5
Source File: train_ppo_model.py From latent-treelstm with MIT License | 5 votes |
def make_path_preparations(args): seed = hash(str(args)) % 1000_000 ListOpsBucketSampler.random_seed = seed torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # logger path args_hash = str(hash(str(args))) if not os.path.exists(args.logs_path): os.makedirs(args.logs_path) logger = get_logger(f"{args.logs_path}/l{args_hash}.log") print(f"{args.logs_path}/l{args_hash}.log") logger.info(f"args: {str(args)}") logger.info(f"args hash: {args_hash}") logger.info(f"random seed: {seed}") # model path args.model_dir = f"{args.model_dir}/m{args_hash}" if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) logger.info(f"checkpoint's dir is: {args.model_dir}") # tensorboard path tensorboard_path = f"{args.tensorboard_path}/t{args_hash}" if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) summary_writer = dict() summary_writer["train"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'train')) summary_writer["valid"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'valid')) return logger, summary_writer
Example #6
Source File: train_tree_lstm_model.py From latent-treelstm with MIT License | 5 votes |
def make_path_preparations(args): # TODO seed = 42 # seed = hash(str(args)) % 1000_000 ListOpsBucketSampler.random_seed = seed torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # logger path args_hash = str(hash(str(args))) if not os.path.exists(args.logs_path): os.makedirs(args.logs_path) logger = get_logger(f"{args.logs_path}/l{args_hash}.log") print(f"{args.logs_path}/l{args_hash}.log") logger.info(f"args: {str(args)}") logger.info(f"args hash: {args_hash}") logger.info(f"random seed: {seed}") # model path args.model_dir = f"{args.model_dir}/m{args_hash}" if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) logger.info(f"checkpoint's dir is: {args.model_dir}") # tensorboard path tensorboard_path = f"{args.tensorboard_path}/t{args_hash}" if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) summary_writer = dict() summary_writer["train"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'train')) summary_writer["valid"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'valid')) return logger, summary_writer
Example #7
Source File: train_reinforce_model.py From latent-treelstm with MIT License | 5 votes |
def make_path_preparations(args): seed = hash(str(args)) % 1000_000 ListOpsBucketSampler.random_seed = seed torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # logger path args_hash = str(hash(str(args))) if not os.path.exists(args.logs_path): os.makedirs(args.logs_path) logger = get_logger(f"{args.logs_path}/l{args_hash}.log") print(f"{args.logs_path}/l{args_hash}.log") logger.info(f"args: {str(args)}") logger.info(f"args hash: {args_hash}") logger.info(f"random seed: {seed}") # model path args.model_dir = f"{args.model_dir}/m{args_hash}" if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) logger.info(f"checkpoint's dir is: {args.model_dir}") # tensorboard path tensorboard_path = f"{args.tensorboard_path}/t{args_hash}" if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) summary_writer = dict() summary_writer["train"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'train')) summary_writer["valid"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'valid')) return logger, summary_writer
Example #8
Source File: train_ppo_model.py From latent-treelstm with MIT License | 5 votes |
def make_path_preparations(args): seed = hash(str(args)) % 1000_000 torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # logger path args_hash = str(hash(str(args))) if not os.path.exists(args.logs_path): os.makedirs(args.logs_path) logger = get_logger(f"{args.logs_path}/l{args_hash}.log") print(f"{args.logs_path}/l{args_hash}.log") logger.info(f"args: {str(args)}") logger.info(f"args hash: {args_hash}") logger.info(f"random seed: {seed}") # model path args.model_dir = f"{args.model_dir}/m{args_hash}" if not os.path.exists(args.model_dir): os.makedirs(args.model_dir) logger.info(f"checkpoint's dir is: {args.model_dir}") # tensorboard path tensorboard_path = f"{args.tensorboard_path}/t{args_hash}" if not os.path.exists(tensorboard_path): os.makedirs(tensorboard_path) summary_writer = dict() summary_writer["train"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'train')) summary_writer["valid"] = SummaryWriter(log_dir=os.path.join(tensorboard_path, 'log' + args_hash, 'valid')) return logger, summary_writer
Example #9
Source File: model.py From Dense_BiLSTM with MIT License | 5 votes |
def __init__(self, config, resume_training=True, model_name='dense_bi_lstm'): # set configurations self.cfg, self.model_name, self.resume_training, self.start_epoch = config, model_name, resume_training, 1 self.logger = get_logger(os.path.join(self.cfg.ckpt_path, 'log.txt')) # build model self._add_placeholder() self._add_embedding_lookup() self._build_model() self._add_loss_op() self._add_accuracy_op() self._add_train_op() print('params number: {}'.format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) # initialize model self.sess, self.saver = None, None self.initialize_session()
Example #10
Source File: slack_autoarchive.py From slack-autoarchive with Apache License 2.0 | 5 votes |
def __init__(self): self.settings = get_channel_reaper_settings() self.logger = get_logger('channel_reaper', './audit.log')
Example #11
Source File: printers.py From munich-scripts with MIT License | 5 votes |
def print_stat_message(update, context): chat_id = update.effective_chat.id utils.get_logger().info(f'[{chat_id}] Displaying statistics', extra={'user': chat_id}) msg = get_msg(update) all_jobs = [x for x in job_storage.get_jobs() if 'chat_id' in x.kwargs] average_interval = sum([x.trigger.interval.seconds for x in all_jobs]) / 60 / len(all_jobs) termin_list = [x.kwargs['termin'] for x in all_jobs] most_popular_termin = max(set(termin_list), key=lambda x: termin_list.count(x)) msg.reply_text(f'ℹ️ Some piece of statistics:\n\n' f'{len(all_jobs)} active subscription(s)\n' f'{average_interval} min average interval\n' f'{most_popular_termin} is the most popular termin')
Example #12
Source File: job_storage.py From munich-scripts with MIT License | 5 votes |
def clear_jobs(): logger = utils.get_logger() logger.info("Cleaning jobs...") # remove jobs scheduled more than a week ago for job in scheduler.get_jobs(): if 'created_at' in job.kwargs and (datetime.datetime.now() - job.kwargs['created_at']).days >= 7: logger.info("Removing job %s" % job.kwargs['chat_id'], extra={'user': job.kwargs['chat_id']}) remove_subscription(job.kwargs['chat_id'], automatic=True)
Example #13
Source File: job_storage.py From munich-scripts with MIT License | 5 votes |
def init_scheduler(): scheduler.start() if not scheduler.get_job('cleanup'): scheduler.add_job(clear_jobs, "interval", minutes=30, id="cleanup") else: # Just to make sure interval is always correct here utils.get_logger().info("Rescheduling cleanup job...") scheduler.reschedule_job('cleanup', trigger='interval', minutes=30)
Example #14
Source File: job_storage.py From munich-scripts with MIT License | 5 votes |
def add_subscription(update, context, interval): logger = utils.get_logger() metric_collector = MetricCollector.get_collector() buro = context.user_data['buro'] termin = context.user_data['termin_type'] chat_id = str(update.effective_chat.id) kwargs = {'chat_id': chat_id, 'buro': buro.get_id(), 'termin': termin, 'created_at': datetime.datetime.now()} scheduler.add_job(printers.notify_about_termins, 'interval', kwargs=kwargs, minutes=int(interval), id=chat_id) logger.info(f'[{chat_id}] Subscription for %s-{termin} created with interval {interval}' % buro.get_name(), extra={'user': chat_id}) metric_collector.log_subscription(buro=buro, appointment=termin, interval=interval, user=int(chat_id))
Example #15
Source File: job_storage.py From munich-scripts with MIT License | 5 votes |
def remove_subscription(chat_id, automatic=False): if not scheduler.get_job(chat_id): return scheduler.remove_job(chat_id) if automatic: utils.get_logger().info(f'[{chat_id}] Subscription removed since it\'s expired', extra={'user': chat_id}) utils.get_bot().send_message(chat_id=chat_id, text='Subscription was removed since it was created more than a week ago') else: utils.get_logger().info(f'[{chat_id}] Subscription removed by request', extra={'user': chat_id}) utils.get_bot().send_message(chat_id=chat_id, text='You were unsubscribed successfully')