Python utils.visualize() Examples

The following are 8 code examples of utils.visualize(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils , or try the search function .
Example #1
Source File: demo_graph.py    From yolo2-pytorch with GNU Lesser General Public License v3.0 5 votes vote down vote up
def main():
    args = make_args()
    config = configparser.ConfigParser()
    utils.load_config(config, args.config)
    for cmd in args.modify:
        utils.modify_config(config, cmd)
    with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
        logging.config.dictConfig(yaml.load(f))
    model_dir = utils.get_model_dir(config)
    category = utils.get_category(config)
    anchors = torch.from_numpy(utils.get_anchors(config)).contiguous()
    try:
        path, step, epoch = utils.train.load_model(model_dir)
        state_dict = torch.load(path, map_location=lambda storage, loc: storage)
    except (FileNotFoundError, ValueError):
        logging.warning('model cannot be loaded')
        state_dict = None
    dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), anchors, len(category))
    logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in dnn.state_dict().values())))
    if state_dict is not None:
        dnn.load_state_dict(state_dict)
    height, width = tuple(map(int, config.get('image', 'size').split()))
    image = torch.autograd.Variable(torch.randn(args.batch_size, 3, height, width))
    output = dnn(image)
    state_dict = dnn.state_dict()
    graph = utils.visualize.Graph(config, state_dict)
    graph(output.grad_fn)
    diff = [key for key in state_dict if key not in graph.drawn]
    if diff:
        logging.warning('variables not shown: ' + str(diff))
    path = graph.dot.view(os.path.basename(model_dir) + '.gv', os.path.dirname(model_dir))
    logging.info(path) 
Example #2
Source File: main_mmd.py    From opt-mmd with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION) 
Example #3
Source File: main_tmmd.py    From opt-mmd with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION) 
Example #4
Source File: main_mmd_fm.py    From opt-mmd with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def main(_):
    pp.pprint(flags.FLAGS.__flags)
    sample_dir_ = os.path.join(FLAGS.sample_dir, FLAGS.name)
    checkpoint_dir_ = os.path.join(FLAGS.checkpoint_dir, FLAGS.name)
    log_dir_ = os.path.join(FLAGS.log_dir, FLAGS.name)
    if not os.path.exists(checkpoint_dir_):
        os.makedirs(checkpoint_dir_)
    if not os.path.exists(sample_dir_):
        os.makedirs(sample_dir_)
    if not os.path.exists(log_dir_):
        os.makedirs(log_dir_)

    with tf.Session() as sess:
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess, config=FLAGS, batch_size=FLAGS.batch_size, output_size=28, c_dim=1,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=checkpoint_dir_, sample_dir=sample_dir_, log_dir=log_dir_)
        else:
            dcgan = DCGAN(sess, image_size=FLAGS.image_size, batch_size=FLAGS.batch_size, output_size=FLAGS.output_size, c_dim=FLAGS.c_dim,
                    dataset_name=FLAGS.dataset, is_crop=FLAGS.is_crop, checkpoint_dir=FLAGS.checkpoint_dir, sample_dir=FLAGS.sample_dir)

        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.sampling(FLAGS)
            #dcgan.load(FLAGS.checkpoint_dir)

        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

            # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION) 
Example #5
Source File: main_non_linear_3DMM.py    From Nonlinear_Face_3DMM with Apache License 2.0 5 votes vote down vote up
def main(_):
    #pp.pprint(FLAGS.__flags)
    pp.pprint(tf.app.flags.FLAGS.flag_values_dict())


    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.samples_dir):
        os.makedirs(FLAGS.samples_dir)

    gpu_options = tf.GPUOptions(visible_device_list =FLAGS.gpu, per_process_gpu_memory_fraction = 0.8, allow_growth = True)

    with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)) as sess:
        dcgan = DCGAN(sess, FLAGS)
            
        if FLAGS.is_train:
            dcgan.train(FLAGS)
        else:
            dcgan.load(FLAGS.checkpoint_dir)
            dcgan.test(FLAGS, True)
        '''
        if FLAGS.visualize:
            to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
                                          [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
                                          [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
                                          [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
                                          [dcgan.h4_w, dcgan.h4_b, None])

                # Below is codes for visualization
            OPTION = 2
            visualize(sess, dcgan, FLAGS, OPTION)''' 
Example #6
Source File: mainmhl.py    From WaterGAN with MIT License 4 votes vote down vote up
def main(_):
  pp.pprint(flags.FLAGS.__flags)

  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True
  with tf.Session(config=run_config) as sess:
    wgan = WGAN(
      sess,
      input_width=FLAGS.input_width,
      input_height=FLAGS.input_height,
      input_water_width=FLAGS.input_water_width,
      input_water_height=FLAGS.input_water_height,
      output_width=FLAGS.output_width,
      output_height=FLAGS.output_height,
      batch_size=FLAGS.batch_size,
      c_dim=FLAGS.c_dim,
      max_depth = FLAGS.max_depth,
      save_epoch=FLAGS.save_epoch,
      water_dataset_name=FLAGS.water_dataset,
      air_dataset_name = FLAGS.air_dataset,
      depth_dataset_name = FLAGS.depth_dataset,
      input_fname_pattern=FLAGS.input_fname_pattern,
      is_crop=FLAGS.is_crop,
      checkpoint_dir=FLAGS.checkpoint_dir,
      results_dir = FLAGS.results_dir,
      sample_dir=FLAGS.sample_dir,
      num_samples = FLAGS.num_samples)

    if FLAGS.is_train:
      wgan.train(FLAGS)
    else:
      if not wgan.load(FLAGS.checkpoint_dir):
        raise Exception("[!] Train a model first, then run test mode")
      wgan.test(FLAGS)

    # to_json("./web/js/layers.js", [wgan.h0_w, wgan.h0_b, wgan.g_bn0],
    #                 [wgan.h1_w, wgan.h1_b, wgan.g_bn1],
    #                 [wgan.h2_w, wgan.h2_b, wgan.g_bn2],
    #                 [wgan.h3_w, wgan.h3_b, wgan.g_bn3],
    #                 [wgan.h4_w, wgan.h4_b, None])

    # Below is codes for visualization
    #OPTION = 1
    #visualize(sess, wgan, FLAGS, OPTION) 
Example #7
Source File: mainjamaica.py    From WaterGAN with MIT License 4 votes vote down vote up
def main(_):
  pp.pprint(flags.FLAGS.__flags)

  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True
  with tf.Session(config=run_config) as sess:
    wgan = WGAN(
      sess,
      input_width=FLAGS.input_width,
      input_height=FLAGS.input_height,
      input_water_width=FLAGS.input_water_width,
      input_water_height=FLAGS.input_water_height,
      output_width=FLAGS.output_width,
      output_height=FLAGS.output_height,
      batch_size=FLAGS.batch_size,
      c_dim=FLAGS.c_dim,
      max_depth = FLAGS.max_depth,
      save_epoch=FLAGS.save_epoch,
      water_dataset_name=FLAGS.water_dataset,
      air_dataset_name = FLAGS.air_dataset,
      depth_dataset_name = FLAGS.depth_dataset,
      input_fname_pattern=FLAGS.input_fname_pattern,
      is_crop=FLAGS.is_crop,
      checkpoint_dir=FLAGS.checkpoint_dir,
      results_dir = FLAGS.results_dir,
      sample_dir=FLAGS.sample_dir,
      num_samples = FLAGS.num_samples)

    if FLAGS.is_train:
      wgan.train(FLAGS)
    else:
      if not wgan.load(FLAGS.checkpoint_dir):
        raise Exception("[!] Train a model first, then run test mode")
      wgan.test(FLAGS)

    # to_json("./web/js/layers.js", [wgan.h0_w, wgan.h0_b, wgan.g_bn0],
    #                 [wgan.h1_w, wgan.h1_b, wgan.g_bn1],
    #                 [wgan.h2_w, wgan.h2_b, wgan.g_bn2],
    #                 [wgan.h3_w, wgan.h3_b, wgan.g_bn3],
    #                 [wgan.h4_w, wgan.h4_b, None])

    # Below is codes for visualization
    #OPTION = 1
    #visualize(sess, wgan, FLAGS, OPTION) 
Example #8
Source File: pacgan_task.py    From PacGAN with MIT License 4 votes vote down vote up
def main(self):
        FLAGS = Struct(**self._config)
        if FLAGS.input_width is None:
            FLAGS.input_width = FLAGS.input_height
        if FLAGS.output_width is None:
            FLAGS.output_width = FLAGS.output_height
        
        FLAGS.checkpoint_dir = os.path.join(self._work_dir, "checkpoint")
        if not os.path.exists(FLAGS.checkpoint_dir):
            os.makedirs(FLAGS.checkpoint_dir)
        FLAGS.sample_dir = os.path.join(self._work_dir, "samples")
        if not os.path.exists(FLAGS.sample_dir):
            os.makedirs(FLAGS.sample_dir)
            
        FLAGS.work_dir = self._work_dir

        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
        run_config = tf.ConfigProto()
        run_config.gpu_options.allow_growth=True
        
        if FLAGS.random:
            seed = random.randint(1, 100000)        
            np.random.seed(seed)
            with open(os.path.join(self._work_dir, "seed.txt"), "w") as f:
                f.write("{}".format(seed))
                
        t_num_test_samples = int(ceil(float(FLAGS.num_test_sample) / float(FLAGS.batch_size))) * FLAGS.batch_size
                
        test_samples = np.random.uniform(-1, 1, size = (t_num_test_samples, FLAGS.z_dim))

        with tf.Session(config=run_config) as sess:
            dcgan = DCGAN(
                sess,
                input_width=FLAGS.input_width,
                input_height=FLAGS.input_height,
                output_width=FLAGS.output_width,
                output_height=FLAGS.output_height,
                batch_size=FLAGS.batch_size,
                sample_num=FLAGS.batch_size,
                dataset_name=FLAGS.dataset,
                input_fname_pattern=FLAGS.input_fname_pattern,
                crop=FLAGS.crop,
                checkpoint_dir=FLAGS.checkpoint_dir,
                sample_dir=FLAGS.sample_dir,
                packing_num=FLAGS.packing_num,
                num_training_sample=FLAGS.num_training_sample,
                num_test_sample=FLAGS.num_test_sample,
                z_dim=FLAGS.z_dim,
                test_samples=test_samples)

            show_all_variables()

            dcgan.train(FLAGS)
       
            #OPTION = 0
            #visualize(sess, dcgan, FLAGS, OPTION)