Python utils.GetListOfFeatureNamesAndSizes() Examples
The following are 30
code examples of utils.GetListOfFeatureNamesAndSizes().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: inference_autoencoder.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #2
Source File: inference.py From Y8M with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.checkpoint_file, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #3
Source File: train.py From Y8M with Apache License 2.0 | 6 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( num_classes = FLAGS.truncated_num_classes, feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( num_classes = FLAGS.truncated_num_classes, decode_zlib = FLAGS.decode_zlib, feature_names=feature_names, feature_sizes=feature_sizes, feature_calcs=FLAGS.c_vars, feature_remove=FLAGS.r_vars) return reader
Example #4
Source File: inference-sample-error-analysis.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #5
Source File: inference-layer.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #6
Source File: train.py From Y8M with Apache License 2.0 | 6 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( num_classes = FLAGS.truncated_num_classes, decode_zlib = FLAGS.decode_zlib, feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( num_classes = FLAGS.truncated_num_classes, decode_zlib = FLAGS.decode_zlib, feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #7
Source File: inference.py From Youtube-8M-WILLOW with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #8
Source File: inference.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #9
Source File: inference.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #10
Source File: inference_test.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #11
Source File: inference-pre-ensemble.py From youtube-8m with Apache License 2.0 | 6 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_dir is "": raise ValueError("'output_dir' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.model_checkpoint_path, FLAGS.input_data_pattern, FLAGS.output_dir, FLAGS.batch_size, FLAGS.top_k)
Example #12
Source File: train_autoencoder.py From youtube-8m with Apache License 2.0 | 5 votes |
def build_model(self): """Find the model and build the graph.""" # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: if FLAGS.frame_only: reader = readers.YT8MFrameFeatureOnlyReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) # Find the model. model = find_class_by_name(FLAGS.model, [labels_autoencoder])() label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])() optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train]) build_graph(reader=reader, model=model, optimizer_class=optimizer_class, clip_gradient_norm=FLAGS.clip_gradient_norm, train_data_pattern=FLAGS.train_data_pattern, label_loss_fn=label_loss_fn, base_learning_rate=FLAGS.base_learning_rate, learning_rate_decay=FLAGS.learning_rate_decay, learning_rate_decay_examples=FLAGS.learning_rate_decay_examples, regularization_penalty=FLAGS.regularization_penalty, num_readers=FLAGS.num_readers, batch_size=FLAGS.batch_size, num_epochs=FLAGS.num_epochs) logging.info("%s: Built graph.", task_as_string(self.task)) return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25)
Example #13
Source File: train.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #14
Source File: inference.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) if FLAGS.input_model_tgz: if FLAGS.train_dir: raise ValueError("You cannot supply --train_dir if supplying " "--input_model_tgz") # Untar. if not os.path.exists(FLAGS.untar_model_dir): os.makedirs(FLAGS.untar_model_dir) tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir) FLAGS.train_dir = FLAGS.untar_model_dir flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json") if not os.path.exists(flags_dict_file): raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file) flags_dict = json.loads(open(flags_dict_file).read()) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( flags_dict["feature_names"], flags_dict["feature_sizes"]) if flags_dict["frame_features"]: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #15
Source File: inference_gpu.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) if FLAGS.input_model_tgz: if FLAGS.train_dir: raise ValueError("You cannot supply --train_dir if supplying " "--input_model_tgz") # Untar. if not os.path.exists(FLAGS.untar_model_dir): os.makedirs(FLAGS.untar_model_dir) tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir) FLAGS.train_dir = FLAGS.untar_model_dir flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json") if not os.path.exists(flags_dict_file): raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file) flags_dict = json.loads(open(flags_dict_file).read()) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( flags_dict["feature_names"], flags_dict["feature_sizes"]) if flags_dict["frame_features"]: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #16
Source File: train.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes, segment_labels=FLAGS.segment_labels) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #17
Source File: inference-sample-error.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") model = find_class_by_name(FLAGS.model, [frame_level_models, video_level_models])() transformer_fn = find_class_by_name(FLAGS.feature_transformer, [feature_transform]) build_graph(reader, model, input_data_pattern=FLAGS.input_data_pattern, batch_size=FLAGS.batch_size, transformer_class=transformer_fn) saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=10000000000) inference(saver, FLAGS.train_dir, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #18
Source File: inference.py From youtube-8m with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) if FLAGS.input_model_tgz: if FLAGS.train_dir: raise ValueError("You cannot supply --train_dir if supplying " "--input_model_tgz") # Untar. if not os.path.exists(FLAGS.untar_model_dir): os.makedirs(FLAGS.untar_model_dir) tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir) FLAGS.train_dir = FLAGS.untar_model_dir flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json") if not file_io.file_exists(flags_dict_file): raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file) flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read()) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( flags_dict["feature_names"], flags_dict["feature_sizes"]) if flags_dict["frame_features"]: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if not FLAGS.output_file: raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if not FLAGS.input_data_pattern: raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #19
Source File: multires_lstm_memory_deep_combine_chain_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def lstm(self, model_input, vocab_size, num_frames, sub_scope="", **unused_params): number_of_layers = FLAGS.lstm_layers lstm_sizes = map(int, FLAGS.lstm_cells.split(",")) feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) sub_inputs = [tf.nn.l2_normalize(x, dim=2) for x in tf.split(model_input, feature_sizes, axis = 2)] assert len(lstm_sizes) == len(feature_sizes), \ "length of lstm_sizes (={}) != length of feature_sizes (={})".format( \ len(lstm_sizes), len(feature_sizes)) states = [] for i in xrange(len(feature_sizes)): with tf.variable_scope(sub_scope+"RNN%d" % i): sub_input = sub_inputs[i] lstm_size = lstm_sizes[i] ## Batch normalize the input stacked_lstm = tf.contrib.rnn.MultiRNNCell( [ tf.contrib.rnn.BasicLSTMCell( lstm_size, forget_bias=1.0, state_is_tuple=True) for _ in range(number_of_layers) ], state_is_tuple=True) output, state = tf.nn.dynamic_rnn(stacked_lstm, sub_input, sequence_length=num_frames, swap_memory=FLAGS.rnn_swap_memory, dtype=tf.float32) states.extend(map(lambda x: x.c, state)) final_state = tf.concat(states, axis = 1) return final_state
Example #20
Source File: lstm_cnn_deep_combine_chain_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def lstmoutput(self, model_input, vocab_size, num_frames): number_of_layers = FLAGS.lstm_layers lstm_sizes = map(int, FLAGS.lstm_cells.split(",")) feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) sub_inputs = [tf.nn.l2_normalize(x, dim=2) for x in tf.split(model_input, feature_sizes, axis = 2)] assert len(lstm_sizes) == len(feature_sizes), \ "length of lstm_sizes (={}) != length of feature_sizes (={})".format( \ len(lstm_sizes), len(feature_sizes)) outputs = [] for i in xrange(len(feature_sizes)): with tf.variable_scope("RNN%d" % i): sub_input = sub_inputs[i] lstm_size = lstm_sizes[i] ## Batch normalize the input stacked_lstm = tf.contrib.rnn.MultiRNNCell( [ tf.contrib.rnn.BasicLSTMCell( lstm_size, forget_bias=1.0, state_is_tuple=True) for _ in range(number_of_layers) ], state_is_tuple=True) output, state = tf.nn.dynamic_rnn(stacked_lstm, sub_input, sequence_length=num_frames, swap_memory=FLAGS.rnn_swap_memory, dtype=tf.float32) outputs.append(output) # concat final_output = tf.concat(outputs, axis=2) return final_output
Example #21
Source File: distillchain_lstm_cnn_deep_combine_chain_model.py From youtube-8m with Apache License 2.0 | 5 votes |
def lstmoutput(self, model_input, vocab_size, num_frames): number_of_layers = FLAGS.lstm_layers lstm_sizes = map(int, FLAGS.lstm_cells.split(",")) feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) sub_inputs = [tf.nn.l2_normalize(x, dim=2) for x in tf.split(model_input, feature_sizes, axis = 2)] assert len(lstm_sizes) == len(feature_sizes), \ "length of lstm_sizes (={}) != length of feature_sizes (={})".format( \ len(lstm_sizes), len(feature_sizes)) outputs = [] for i in xrange(len(feature_sizes)): with tf.variable_scope("RNN%d" % i): sub_input = sub_inputs[i] lstm_size = lstm_sizes[i] ## Batch normalize the input stacked_lstm = tf.contrib.rnn.MultiRNNCell( [ tf.contrib.rnn.BasicLSTMCell( lstm_size, forget_bias=1.0, state_is_tuple=True) for _ in range(number_of_layers) ], state_is_tuple=True) output, state = tf.nn.dynamic_rnn(stacked_lstm, sub_input, sequence_length=num_frames, swap_memory=FLAGS.rnn_swap_memory, dtype=tf.float32) outputs.append(output) # concat final_output = tf.concat(outputs, axis=2) return final_output
Example #22
Source File: train_distill.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes, distill=True) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #23
Source File: train_embedding.py From youtube-8m with Apache License 2.0 | 5 votes |
def build_model(self): """Find the model and build the graph.""" # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: if FLAGS.frame_only: reader = readers.YT8MFrameFeatureOnlyReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) # Find the model. model = find_class_by_name(FLAGS.model, [labels_embedding])() label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses_embedding])() optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train]) build_graph(reader=reader, model=model, optimizer_class=optimizer_class, clip_gradient_norm=FLAGS.clip_gradient_norm, train_data_pattern=FLAGS.train_data_pattern, label_loss_fn=label_loss_fn, base_learning_rate=FLAGS.base_learning_rate, learning_rate_decay=FLAGS.learning_rate_decay, learning_rate_decay_examples=FLAGS.learning_rate_decay_examples, regularization_penalty=FLAGS.regularization_penalty, num_readers=FLAGS.num_readers, batch_size=FLAGS.batch_size, num_epochs=FLAGS.num_epochs) logging.info("%s: Built graph.", task_as_string(self.task)) return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25)
Example #24
Source File: inference.py From AttentionCluster with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) if FLAGS.input_model_tgz: if FLAGS.train_dir: raise ValueError("You cannot supply --train_dir if supplying " "--input_model_tgz") # Untar. if not file_io.file_exists(FLAGS.untar_model_dir): os.makedirs(FLAGS.untar_model_dir) tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir) FLAGS.train_dir = FLAGS.untar_model_dir flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json") if not file_io.file_exists(flags_dict_file): raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file) flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read()) # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( flags_dict["feature_names"], flags_dict["feature_sizes"]) if flags_dict["frame_features"]: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #25
Source File: train.py From AttentionCluster with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #26
Source File: inference.py From Y8M with Apache License 2.0 | 5 votes |
def main(unused_argv): logging.set_verbosity(tf.logging.INFO) print("START FLAGS===========================") print("train_dir: " +str(FLAGS.train_dir)) print("output_file: " +str(FLAGS.output_file)) print("input_data_pattern: " + str(FLAGS.input_data_pattern)) print("frame_features: " + str(FLAGS.frame_features)) print("batch_size: " +str(FLAGS.batch_size)) print("feature_names: " + str(FLAGS.feature_names)) print("feature_sizes: " + str(FLAGS.feature_sizes)) print("c_vars: " + str(FLAGS.c_vars)) print("num_readers: " + str(FLAGS.num_readers)) print("top_k: " + str(FLAGS.top_k)) print("layers_keep_probs: " + str(FLAGS.layers_keep_probs)) print("gpu_only: " + str(FLAGS.gpu_only)) print("END FLAGS ============================") # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes, num_classes=FLAGS.truncated_num_classes, decode_zlib=FLAGS.decode_zlib) else: reader = readers.YT8MAggregatedFeatureReader( num_classes = FLAGS.truncated_num_classes, decode_zlib = FLAGS.decode_zlib, feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.output_file is "": raise ValueError("'output_file' was not specified. " "Unable to continue with inference.") if FLAGS.input_data_pattern is "": raise ValueError("'input_data_pattern' was not specified. " "Unable to continue with inference.") inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern, FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
Example #27
Source File: check_video_id.py From youtube-8m with Apache License 2.0 | 5 votes |
def check_video_id(): tf.set_random_seed(0) # for reproducibility with tf.Graph().as_default(): # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) # prepare a reader for each single model prediction result all_readers = [] all_patterns = FLAGS.eval_data_patterns all_patterns = map(lambda x: x.strip(), all_patterns.strip().strip(",").split(",")) for i in xrange(len(all_patterns)): reader = readers.EnsembleReader( feature_names=feature_names, feature_sizes=feature_sizes) all_readers.append(reader) input_reader = None input_data_pattern = None if FLAGS.input_data_pattern is not None: input_reader = readers.EnsembleReader( feature_names=["mean_rgb","mean_audio"], feature_sizes=[1024,128]) input_data_pattern = FLAGS.input_data_pattern if FLAGS.eval_data_patterns is "": raise IOError("'eval_data_patterns' was not specified. " + "Nothing to evaluate.") build_graph( all_readers=all_readers, input_reader=input_reader, input_data_pattern=input_data_pattern, all_eval_data_patterns=all_patterns, batch_size=FLAGS.batch_size) logging.info("built evaluation graph") video_id_equal = tf.get_collection("video_id_equal")[0] input_distance = tf.get_collection("input_distance")[0] check_loop(video_id_equal, input_distance, all_patterns)
Example #28
Source File: train.py From Youtube-8M-WILLOW with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #29
Source File: train.py From Y8M with Apache License 2.0 | 5 votes |
def get_reader(): # Convert feature_names and feature_sizes to lists of values. feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader( feature_names=feature_names, feature_sizes=feature_sizes) return reader
Example #30
Source File: eval.py From youtube-8m with Apache License 2.0 | 4 votes |
def evaluate(): tf.set_random_seed(0) # for reproducibility with tf.Graph().as_default(): # convert feature_names and feature_sizes to lists of values feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes( FLAGS.feature_names, FLAGS.feature_sizes) if FLAGS.frame_features: reader = readers.YT8MFrameFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) else: reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names, feature_sizes=feature_sizes) if FLAGS.distill_data_pattern is not None: distill_reader = readers.YT8MAggregatedFeatureReader(feature_names=["predictions"], feature_sizes=[4716]) else: distill_reader = None model = find_class_by_name(FLAGS.model, [frame_level_models, video_level_models])() label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])() transformer_class = find_class_by_name(FLAGS.feature_transformer, [feature_transform]) if FLAGS.eval_data_pattern is "": raise IOError("'eval_data_pattern' was not specified. " + "Nothing to evaluate.") build_graph( reader=reader, model=model, eval_data_pattern=FLAGS.eval_data_pattern, label_loss_fn=label_loss_fn, num_readers=FLAGS.num_readers, transformer_class=transformer_class, distill_reader=distill_reader, batch_size=FLAGS.batch_size) logging.info("built evaluation graph") video_id_batch = tf.get_collection("video_id_batch")[0] prediction_batch = tf.get_collection("predictions")[0] label_batch = tf.get_collection("labels")[0] loss = tf.get_collection("loss")[0] summary_op = tf.get_collection("summary_op")[0] saver = tf.train.Saver(tf.global_variables()) summary_writer = tf.summary.FileWriter( FLAGS.train_dir, graph=tf.get_default_graph()) evl_metrics = eval_util.EvaluationMetrics(reader.num_classes, FLAGS.top_k) last_global_step_val = -1 while True: last_global_step_val = evaluation_loop(video_id_batch, prediction_batch, label_batch, loss, summary_op, saver, summary_writer, evl_metrics, last_global_step_val) if FLAGS.run_once: break