Python utils.TextLoader() Examples
The following are 4
code examples of utils.TextLoader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: test_train.py From word-rnn-tensorflow with MIT License | 5 votes |
def setUp(self): self.data_loader = TextLoader("tests/test_data", batch_size=2, seq_length=5)
Example #2
Source File: test_utils.py From word-rnn-tensorflow with MIT License | 5 votes |
def setUp(self): self.data_loader = TextLoader("tests/test_data", batch_size=2, seq_length=5)
Example #3
Source File: train.py From poem-bot with MIT License | 5 votes |
def train(args): data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length) args.vocab_size = data_loader.vocab_size with open(os.path.join(args.save_dir, 'config.pkl'), 'wb') as f: cPickle.dump(args, f) with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'wb') as f: cPickle.dump((data_loader.chars, data_loader.vocab), f) model = Model(args) with tf.Session() as sess: tf.initialize_all_variables().run() saver = tf.train.Saver(tf.all_variables()) for e in range(args.num_epochs): sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e))) data_loader.reset_batch_pointer() state = model.initial_state.eval() for b in range(data_loader.num_batches): start = time.time() x, y = data_loader.next_batch() feed = {model.input_data: x, model.targets: y, model.initial_state: state} train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed) end = time.time() print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(e * data_loader.num_batches + b, args.num_epochs * data_loader.num_batches, e, train_loss, end - start)) if (e * data_loader.num_batches + b) % args.save_every == 0: checkpoint_path = os.path.join(args.save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step = e * data_loader.num_batches + b) print("model saved to {}".format(checkpoint_path))
Example #4
Source File: train.py From tensorflow-grid-lstm with Apache License 2.0 | 4 votes |
def train(args): data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length) args.vocab_size = data_loader.vocab_size with open(os.path.join(args.save_dir, 'config.pkl'), 'wb') as f: pickle.dump(args, f) with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'wb') as f: pickle.dump((data_loader.chars, data_loader.vocab), f) model = Model(args) with tf.Session() as sess: tf.global_variables_initializer().run() saver = tf.train.Saver(tf.global_variables()) train_loss_iterations = {'iteration': [], 'epoch': [], 'train_loss': [], 'val_loss': []} for e in range(args.num_epochs): sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e))) data_loader.reset_batch_pointer() state = sess.run(model.initial_state) for b in range(data_loader.num_batches): start = time.time() x, y = data_loader.next_batch() feed = {model.input_data: x, model.targets: y, model.initial_state: state} train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed) end = time.time() batch_idx = e * data_loader.num_batches + b print("{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(batch_idx, args.num_epochs * data_loader.num_batches, e, train_loss, end - start)) train_loss_iterations['iteration'].append(batch_idx) train_loss_iterations['epoch'].append(e) train_loss_iterations['train_loss'].append(train_loss) if batch_idx % args.save_every == 0: # evaluate state_val = sess.run(model.initial_state) avg_val_loss = 0 for x_val, y_val in data_loader.val_batches: feed_val = {model.input_data: x_val, model.targets: y_val, model.initial_state: state_val} val_loss, state_val, _ = sess.run([model.cost, model.final_state, model.train_op], feed_val) avg_val_loss += val_loss / len(list(data_loader.val_batches)) print('val_loss: {:.3f}'.format(avg_val_loss)) train_loss_iterations['val_loss'].append(avg_val_loss) checkpoint_path = os.path.join(args.save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=e * data_loader.num_batches + b) print("model saved to {}".format(checkpoint_path)) else: train_loss_iterations['val_loss'].append(None) pd.DataFrame(data=train_loss_iterations, columns=train_loss_iterations.keys()).to_csv(os.path.join(args.save_dir, 'log.csv'))