Python utils.Dequantize() Examples
The following are 15
code examples of utils.Dequantize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: readers.py From youtube-8m with Apache License 2.0 | 6 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #2
Source File: readers.py From Youtube-8M-WILLOW with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #3
Source File: YM_labels_matrix.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_frame_input_feature(input_file): features = [] record_iterator = tf.python_io.tf_record_iterator(path=input_file) for i, string_record in enumerate(record_iterator): example = tf.train.SequenceExample() example.ParseFromString(string_record) # traverse the Example format to get data video_id = example.context.feature['video_id'].bytes_list.value[0] label = example.context.feature['labels'].int64_list.value[:] rgbs = [] audios = [] rgb_feature = example.feature_lists.feature_list['rgb'].feature for i in range(len(rgb_feature)): rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) rgb = utils.Dequantize(rgb, 2, -2) rgbs.append(rgb) audio_feature = example.feature_lists.feature_list['audio'].feature for i in range(len(audio_feature)): audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) audio = utils.Dequantize(audio, 2, -2) audios.append(audio) rgbs = np.array(rgbs) audios = np.array(audios) features.append((video_id, label, rgbs, audios)) return features
Example #4
Source File: YM_framemean.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_frame_input_feature(input_file): features = [] record_iterator = tf.python_io.tf_record_iterator(path=input_file) for i, string_record in enumerate(record_iterator): example = tf.train.SequenceExample() example.ParseFromString(string_record) # traverse the Example format to get data video_id = example.context.feature['video_id'].bytes_list.value[0] label = example.context.feature['labels'].int64_list.value[:] rgbs = [] audios = [] rgb_feature = example.feature_lists.feature_list['rgb'].feature for i in range(len(rgb_feature)): rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) rgb = utils.Dequantize(rgb, 2, -2) rgbs.append(rgb) audio_feature = example.feature_lists.feature_list['audio'].feature for i in range(len(audio_feature)): audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) audio = utils.Dequantize(audio, 2, -2) audios.append(audio) rgbs = np.array(rgbs) audios = np.array(audios) features.append((video_id, label, rgbs, audios)) return features
Example #5
Source File: YM_readframefeature.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_frame_input_feature(input_file): features = [] record_iterator = tf.python_io.tf_record_iterator(path=input_file) for i, string_record in enumerate(record_iterator): example = tf.train.SequenceExample() example.ParseFromString(string_record) # traverse the Example format to get data video_id = example.context.feature['video_id'].bytes_list.value[0] label = example.context.feature['labels'].int64_list.value[:] rgbs = [] audios = [] rgb_feature = example.feature_lists.feature_list['rgb'].feature for i in range(len(rgb_feature)): rgb = np.fromstring(rgb_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) rgb = utils.Dequantize(rgb, 2, -2) rgbs.append(rgb) audio_feature = example.feature_lists.feature_list['audio'].feature for i in range(len(audio_feature)): audio = np.fromstring(audio_feature[i].bytes_list.value[0], dtype=np.uint8).astype(np.float32) audio = utils.Dequantize(audio, 2, -2) audios.append(audio) rgbs = np.array(rgbs) audios = np.array(audios) features.append((video_id, label, rgbs, audios)) return features
Example #6
Source File: readers.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #7
Source File: readers.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #8
Source File: readers.py From youtube-8m with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #9
Source File: readers.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) if self.prepare_distill: def_feature_matrix = tf.reshape(tf.decode_raw(features, tf.uint8), [-1, feature_size]) def_feature_matrix = resize_axis(def_feature_matrix, 0, max_frames) return feature_matrix, num_frames, def_feature_matrix return feature_matrix, num_frames
Example #10
Source File: readers.py From AttentionCluster with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #11
Source File: readers.py From Y8M with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #12
Source File: split_video.py From Y8M with Apache License 2.0 | 5 votes |
def frame_example_2_np(seq_example_bytes, max_quantized_value=2, min_quantized_value=-2): feature_names=['rgb','audio'] feature_sizes = [1024, 128] with tf.Graph().as_default(): contexts, features = tf.parse_single_sequence_example( seq_example_bytes, context_features={"video_id": tf.FixedLenFeature( [], tf.string), "labels": tf.VarLenFeature(tf.int64)}, sequence_features={ feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string) for feature_name in feature_names }) decoded_features = { name: tf.reshape( tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32), [-1, size]) for name, size in zip(feature_names, feature_sizes) } feature_matrices = { name: utils.Dequantize(decoded_features[name], max_quantized_value, min_quantized_value) for name in feature_names} with tf.Session() as sess: vid = sess.run(contexts['video_id']) labs = sess.run(contexts['labels'].values) rgb = sess.run(feature_matrices['rgb']) audio = sess.run(feature_matrices['audio']) return vid, labs, rgb, audio #%% Split frame level file into three video level files: all, 1st half, 2nd half.
Example #13
Source File: split_video.py From Y8M with Apache License 2.0 | 5 votes |
def build_graph(): feature_names=['rgb','audio'] feature_sizes = [1024, 128] max_quantized_value=2 min_quantized_value=-2 seq_example_bytes = tf.placeholder(tf.string) contexts, features = tf.parse_single_sequence_example( seq_example_bytes, context_features={"video_id": tf.FixedLenFeature( [], tf.string), "labels": tf.VarLenFeature(tf.int64)}, sequence_features={ feature_name : tf.FixedLenSequenceFeature([], dtype=tf.string) for feature_name in feature_names }) decoded_features = { name: tf.reshape( tf.cast(tf.decode_raw(features[name], tf.uint8), tf.float32), [-1, size]) for name, size in zip(feature_names, feature_sizes) } feature_matrices = { name: utils.Dequantize(decoded_features[name], max_quantized_value, min_quantized_value) for name in feature_names} tf.add_to_collection("vid_tsr", contexts['video_id']) tf.add_to_collection("labs_tsr", contexts['labels'].values) tf.add_to_collection("rgb_tsr", feature_matrices['rgb']) tf.add_to_collection("audio_tsr", feature_matrices['audio']) tf.add_to_collection("seq_example_bytes", seq_example_bytes) # with tf.Session() as sess: # writer = tf.summary.FileWriter('./graphs', sess.graph)
Example #14
Source File: readers.py From Y8M with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames
Example #15
Source File: readers.py From Y8M with Apache License 2.0 | 5 votes |
def get_video_matrix(self, features, feature_size, max_frames, max_quantized_value, min_quantized_value): """Decodes features from an input string and quantizes it. Args: features: raw feature values feature_size: length of each frame feature vector max_frames: number of frames (rows) in the output feature_matrix max_quantized_value: the maximum of the quantized value. min_quantized_value: the minimum of the quantized value. Returns: feature_matrix: matrix of all frame-features num_frames: number of frames in the sequence """ decoded_features = tf.reshape( tf.cast(tf.decode_raw(features, tf.uint8), tf.float32), [-1, feature_size]) num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames) feature_matrix = utils.Dequantize(decoded_features, max_quantized_value, min_quantized_value) feature_matrix = resize_axis(feature_matrix, 0, max_frames) return feature_matrix, num_frames