Python utils.save_model() Examples
The following are 3
code examples of utils.save_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: evaluation.py From PCANet with MIT License | 6 votes |
def evaluate_ensemble(train_set, test_set, ensemble_params, transformer_params): (images_train, y_train), (images_test, y_test) = train_set, test_set model, accuracy, train_time, predict_time = run_pcanet_ensemble( ensemble_params, transformer_params, images_train, images_test, y_train, y_test ) filename = model_filename() utils.save_model(model, join(pickle_dir, filename)) params = {} params["ensemble-model"] = filename params["ensemble-accuracy"] = accuracy params["ensemble-train-time"] = train_time params["ensemble-predict-time"] = predict_time return params
Example #2
Source File: evaluation.py From PCANet with MIT License | 6 votes |
def evaluate_normal(train_set, test_set, transformer_params): (images_train, y_train), (images_test, y_test) = train_set, test_set model, accuracy, train_time, transform_time = run_pcanet_normal( transformer_params, images_train, images_test, y_train, y_test ) filename = model_filename() utils.save_model(model, join(pickle_dir, filename)) params = {} params["normal-model"] = filename params["normal-accuracy"] = accuracy params["normal-train-time"] = train_time params["normal-transform-time"] = transform_time return params
Example #3
Source File: dl_models.py From Sarcasm-Detection with MIT License | 5 votes |
def nn_bow_model(x_train, y_train, x_test, y_test, results, mode, epochs=15, batch_size=32, hidden_units=50, save=False, plot_graph=False): # Build the model print("\nBuilding Bow NN model...") model = Sequential() model.add(Dense(hidden_units, input_shape=(x_train.shape[1],), activation='sigmoid')) model.add(Dense(1, activation='sigmoid')) model.summary() # Train using binary cross entropy loss, Adam implementation of Gradient Descent model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', utils.f1_score]) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) if plot_graph: utils.plot_training_statistics(history, "/plots/bow_models/bow_%s_mode" % mode) # Evaluate the model loss, acc, f1 = model.evaluate(x_test, y_test, batch_size=batch_size) results[mode] = [loss, acc, f1] classes = model.predict_classes(x_test, batch_size=batch_size) y_pred = [item for c in classes for item in c] utils.print_statistics(y_test, y_pred) print("%d examples predicted correctly." % np.sum(np.array(y_test) == np.array(y_pred))) print("%d examples predicted 1." % np.sum(1 == np.array(y_pred))) print("%d examples predicted 0." % np.sum(0 == np.array(y_pred))) if save: json_name = path + "/models/bow_models/json_bow_" + mode + "_mode.json" h5_weights_name = path + "/models/bow_models/h5_bow_" + mode + "_mode.json" utils.save_model(model, json_name=json_name, h5_weights_name=h5_weights_name) # A standard DNN used as a baseline