Python utils.load_image() Examples
The following are 14
code examples of utils.load_image().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: stylize_image.py From fast-style-transfer with GNU General Public License v3.0 | 5 votes |
def main(): parser = build_parser() options = parser.parse_args() check_opts(options) network = options.network_path if not os.path.isdir(network): parser.error("Network %s does not exist." % network) content_image = utils.load_image(options.content) reshaped_content_height = (content_image.shape[0] - content_image.shape[0] % 4) reshaped_content_width = (content_image.shape[1] - content_image.shape[1] % 4) reshaped_content_image = content_image[:reshaped_content_height, :reshaped_content_width, :] reshaped_content_image = np.ndarray.reshape(reshaped_content_image, (1,) + reshaped_content_image.shape) prediction = ffwd(reshaped_content_image, network) utils.save_image(prediction, options.output_path)
Example #2
Source File: train_network.py From fast-style-transfer with GNU General Public License v3.0 | 5 votes |
def main(): parser = build_parser() options = parser.parse_args() check_opts(options) style_image = utils.load_image(options.style) style_image = np.ndarray.reshape(style_image, (1,) + style_image.shape) content_targets = utils.get_files(options.train_path) content_shape = utils.load_image(content_targets[0]).shape device = '/gpu:0' if options.use_gpu else '/cpu:0' style_transfer = FastStyleTransfer( vgg_path=VGG_PATH, style_image=style_image, content_shape=content_shape, content_weight=options.content_weight, style_weight=options.style_weight, tv_weight=options.style_weight, batch_size=options.batch_size, device=device) for iteration, network, first_image, losses in style_transfer.train( content_training_images=content_targets, learning_rate=options.learning_rate, epochs=options.epochs, checkpoint_iterations=options.checkpoint_iterations ): print_losses(losses) saver = tf.train.Saver() if (iteration % 100 == 0): saver.save(network, opts.save_path + '/fast_style_network.ckpt') saver.save(network, opts.save_path + '/fast_style_network.ckpt')
Example #3
Source File: fast_style_transfer.py From fast-style-transfer with GNU General Public License v3.0 | 5 votes |
def _load_batch(self, image_paths): return np.array([utils.load_image(img_path) for j, img_path in enumerate(image_paths)])
Example #4
Source File: feature_extraction.py From intermediate-cnn-features with Apache License 2.0 | 5 votes |
def feature_extraction_images(model, cores, batch_sz, image_list, output_path): """ Function that extracts the intermediate CNN features of each image in a provided image list. Args: model: CNN network cores: CPU cores for the parallel video loading batch_sz: batch size fed to the CNN network image_list: list of image to extract features output_path: path to store video features """ images = [image.strip() for image in open(image_list).readlines()] print '\nNumber of images: ', len(images) print 'Storage directory: ', output_path print 'CPU cores: ', cores print 'Batch size: ', batch_sz print '\nFeature Extraction Process' print '==========================' pool = Pool(cores) batches = len(images)/batch_sz + 1 features = np.zeros((len(images), model.final_sz)) for batch in tqdm(xrange(batches), mininterval=1.0, unit='batches'): # load images in parallel future = [] for image in images[batch * batch_sz: (batch+1) * batch_sz]: future += [pool.apply_async(load_image, args=[image, model.desired_size])] image_tensor = [] for f in future: image_tensor += [f.get()] # extract features features[int(batch * batch_sz): int((batch + 1) * batch_sz)] = \ model.extract(np.array(image_tensor), batch_sz) # save features np.save(os.path.join(output_path, '{}_features'.format(model.net_name)), features)
Example #5
Source File: run_test.py From tensorflow-fast-style-transfer with Apache License 2.0 | 5 votes |
def main(): # parse arguments args = parse_args() if args is None: exit() # load content image content_image = utils.load_image(args.content, max_size=args.max_size) # open session soft_config = tf.ConfigProto(allow_soft_placement=True) soft_config.gpu_options.allow_growth = True # to deal with large image sess = tf.Session(config=soft_config) # build the graph transformer = style_transfer_tester.StyleTransferTester(session=sess, model_path=args.style_model, content_image=content_image, ) # execute the graph start_time = time.time() output_image = transformer.test() end_time = time.time() # save result utils.save_image(output_image, args.output) # report execution time shape = content_image.shape #(batch, width, height, channel) print('Execution time for a %d x %d image : %f msec' % (shape[0], shape[1], 1000.*float(end_time - start_time)/60))
Example #6
Source File: neural_style.py From examples with BSD 3-Clause "New" or "Revised" License | 5 votes |
def stylize(args): device = torch.device("cuda" if args.cuda else "cpu") content_image = utils.load_image(args.content_image, scale=args.content_scale) content_transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255)) ]) content_image = content_transform(content_image) content_image = content_image.unsqueeze(0).to(device) if args.model.endswith(".onnx"): output = stylize_onnx_caffe2(content_image, args) else: with torch.no_grad(): style_model = TransformerNet() state_dict = torch.load(args.model) # remove saved deprecated running_* keys in InstanceNorm from the checkpoint for k in list(state_dict.keys()): if re.search(r'in\d+\.running_(mean|var)$', k): del state_dict[k] style_model.load_state_dict(state_dict) style_model.to(device) if args.export_onnx: assert args.export_onnx.endswith(".onnx"), "Export model file should end with .onnx" output = torch.onnx._export(style_model, content_image, args.export_onnx).cpu() else: output = style_model(content_image).cpu() utils.save_image(args.output_image, output[0])
Example #7
Source File: sunrgbd_data.py From reading-frustum-pointnets-code with Apache License 2.0 | 5 votes |
def get_image(self, idx): img_filename = os.path.join(self.image_dir, '%06d.jpg'%(idx)) return utils.load_image(img_filename)
Example #8
Source File: neural_style.py From pytorch-multiple-style-transfer with BSD 3-Clause "New" or "Revised" License | 5 votes |
def stylize(args): device = torch.device("cuda" if args.cuda else "cpu") content_image = utils.load_image(args.content_image, scale=args.content_scale) content_transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255)) ]) content_image = content_transform(content_image) content_image = content_image.unsqueeze(0).to(device) with torch.no_grad(): style_model = TransformerNet(style_num=args.style_num) state_dict = torch.load(args.model) style_model.load_state_dict(state_dict) style_model.to(device) output = style_model(content_image, style_id = [args.style_id]).cpu() utils.save_image('output/'+args.output_image+'_style'+str(args.style_id)+'.jpg', output[0])
Example #9
Source File: h36m_input.py From eccv18_mtvae with MIT License | 5 votes |
def sample_image_seq(dataset_name, filename_pattern, max_length, keyframes): metadata = DATASET_TO_METADATA[dataset_name] im_height = metadata['im_height'] im_width = metadata['im_width'] image_seq = np.zeros((max_length, im_height, im_width, 3), dtype=np.float32) assert (keyframes.shape[0] == max_length) #print('loading images: %s' % filename_pattern) for i in xrange(max_length): #print('loading images [%02d]: %s' % (i, filename_pattern)) image_seq[i] = utils.load_image(filename_pattern.replace('*', '%05d' % keyframes[i])) return image_seq
Example #10
Source File: neural_style.py From PyTorch with MIT License | 5 votes |
def stylize(args): device = torch.device("cuda" if args.cuda else "cpu") content_image = utils.load_image(args.content_image, scale=args.content_scale) content_transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255)) ]) content_image = content_transform(content_image) content_image = content_image.unsqueeze(0).to(device) if args.model.endswith(".onnx"): output = stylize_onnx_caffe2(content_image, args) else: with torch.no_grad(): style_model = TransformerNet() state_dict = torch.load(args.model) # remove saved deprecated running_* keys in InstanceNorm from the checkpoint for k in list(state_dict.keys()): if re.search(r'in\d+\.running_(mean|var)$', k): del state_dict[k] style_model.load_state_dict(state_dict) style_model.to(device) if args.export_onnx: assert args.export_onnx.endswith(".onnx"), "Export model file should end with .onnx" output = torch.onnx._export(style_model, content_image, args.export_onnx).cpu() else: output = style_model(content_image).cpu() utils.save_image(args.output_image, output[0])
Example #11
Source File: neural_style.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def stylize(args): device = torch.device("cuda" if args.cuda else "cpu") content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))]) content_image = utils.load_image(args.content_image, scale=args.content_scale) content_image = content_transform(content_image) content_image = content_image.unsqueeze(0).to(device) with torch.no_grad(): style_model = torch.load(args.model) style_model.to(device) output = style_model(content_image).cpu() utils.save_image(args.output_image, output[0])
Example #12
Source File: sunrgbd_data.py From frustum-pointnets with Apache License 2.0 | 5 votes |
def get_image(self, idx): img_filename = os.path.join(self.image_dir, '%06d.jpg'%(idx)) return utils.load_image(img_filename)
Example #13
Source File: style_transfer_trainer.py From tensorflow-fast-style-transfer with Apache License 2.0 | 4 votes |
def __init__(self, content_layer_ids, style_layer_ids, content_images, style_image, session, net, num_epochs, batch_size, content_weight, style_weight, tv_weight, learn_rate, save_path, check_period, test_image, max_size): self.net = net self.sess = session # sort layers info self.CONTENT_LAYERS = collections.OrderedDict(sorted(content_layer_ids.items())) self.STYLE_LAYERS = collections.OrderedDict(sorted(style_layer_ids.items())) # input images self.x_list = content_images mod = len(content_images) % batch_size self.x_list = self.x_list[:-mod] self.y_s0 = style_image self.content_size = len(self.x_list) # parameters for optimization self.num_epochs = num_epochs self.content_weight = content_weight self.style_weight = style_weight self.tv_weight = tv_weight self.learn_rate = learn_rate self.batch_size = batch_size self.check_period = check_period # path for model to be saved self.save_path = save_path # image transform network self.transform = transform.Transform() self.tester = transform.Transform('test') # build graph for style transfer self._build_graph() # test during training if test_image is not None: self.TEST = True # load content image self.test_image = utils.load_image(test_image, max_size=max_size) # build graph self.x_test = tf.placeholder(tf.float32, shape=self.test_image.shape, name='test_input') self.xi_test = tf.expand_dims(self.x_test, 0) # add one dim for batch # result image from transform-net self.y_hat_test = self.tester.net( self.xi_test / 255.0) # please build graph for train first. tester.net reuses variables. else: self.TEST = False
Example #14
Source File: run_train.py From tensorflow-fast-style-transfer with Apache License 2.0 | 4 votes |
def main(): # parse arguments args = parse_args() if args is None: exit() # initiate VGG19 model model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME vgg_net = vgg19.VGG19(model_file_path) # get file list for training content_images = utils.get_files(args.trainDB_path) # load style image style_image = utils.load_image(args.style) # create a map for content layers info CONTENT_LAYERS = {} for layer, weight in zip(args.content_layers,args.content_layer_weights): CONTENT_LAYERS[layer] = weight # create a map for style layers info STYLE_LAYERS = {} for layer, weight in zip(args.style_layers, args.style_layer_weights): STYLE_LAYERS[layer] = weight # open session sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # build the graph for train trainer = style_transfer_trainer.StyleTransferTrainer(session=sess, content_layer_ids=CONTENT_LAYERS, style_layer_ids=STYLE_LAYERS, content_images=content_images, style_image=add_one_dim(style_image), net=vgg_net, num_epochs=args.num_epochs, batch_size=args.batch_size, content_weight=args.content_weight, style_weight=args.style_weight, tv_weight=args.tv_weight, learn_rate=args.learn_rate, save_path=args.output, check_period=args.checkpoint_every, test_image=args.test, max_size=args.max_size, ) # launch the graph in a session trainer.train() # close session sess.close()