Python utils.make_dir() Examples
The following are 13
code examples of utils.make_dir().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: jd_item_info.py From jd_analysis with GNU Lesser General Public License v3.0 | 6 votes |
def __init__(self, name = None, **kwargs): super(JDItemInfoSpider, self).__init__(name, **kwargs) self.url = kwargs.get("url") self.guid = kwargs.get('guid', 'guid') self.product_id = kwargs.get('product_id') # self.url = 'https://item.jd.com/11478178241.html' # self.url = 'https://item.jd.com/4142680.html' # self.url = 'https://item.jd.com/3133859.html' # self.url = 'https://item.jd.com/3995645.html' # self.product_id = 3995645 self.log('product_id:%s' % self.product_id) self.item_table = 'item_%s' % self.product_id self.urls_key = '%s_urls' % self.product_id self.log_dir = 'log/%s' % self.product_id self.is_record_page = False self.sql = kwargs.get('sql') self.red = kwargs.get('red') if self.is_record_page: utils.make_dir(self.log_dir)
Example #2
Source File: jd_comment.py From jd_analysis with GNU Lesser General Public License v3.0 | 6 votes |
def __init__(self, name = None, **kwargs): super(JDCommentSpider, self).__init__(name, **kwargs) self.url = kwargs.get("url") self.guid = kwargs.get('guid', 'guid') self.product_id = kwargs.get('product_id') # self.url = 'https://item.jd.com/11478178241.html' # self.url = 'https://item.jd.com/4142680.html' # self.url = 'https://item.jd.com/3133859.html' # self.url = 'https://item.jd.com/3995645.html' # self.product_id = 3995645 self.log('product_id:%s' % self.product_id) self.item_table = 'item_%s' % self.product_id self.urls_key = '%s_urls' % self.product_id self.log_dir = 'log/%s' % self.product_id self.is_record_page = False self.sql = kwargs.get('sql') self.red = kwargs.get('red') proxymng.red = self.red if self.is_record_page: utils.make_dir(self.log_dir) self.init()
Example #3
Source File: models.py From deep-q-learning with MIT License | 6 votes |
def load(self): ''' Loads replay memory (attributes and arrays) into self, if possible. ''' # Create out dir utils.make_dir(self.data_dir) try: print('Loading Memory data into Replay Memory Instance...') # Load property list d = json.load(open('{}/properties.json'.format(self.data_dir))) # Load numpy arrays self._load_arrays(self.data_dir, d['saved_size']) print('Finished loading Memory data into Replay Memory Instance!') except IOError as e: self.__init__(self.memory_size, data_dir=self.data_dir, load_existing=False) print("I/O error({0}): {1}".format(e.errno, e.strerror)) print("Couldn't find initial values for Replay Memory, instance init as new.")
Example #4
Source File: validator.py From IPProxyTool with MIT License | 5 votes |
def init(self): self.dir_log = 'log/validator/%s' % self.name utils.make_dir(self.dir_log) self.sql.init_proxy_table(self.name)
Example #5
Source File: basespider.py From IPProxyTool with MIT License | 5 votes |
def init(self): self.meta = { 'download_timeout': self.timeout, } self.dir_log = 'log/proxy/%s' % self.name utils.make_dir(self.dir_log) self.sql.init_proxy_table(config.free_ipproxy_table)
Example #6
Source File: models.py From deep-q-learning with MIT License | 5 votes |
def save(self, size): ''' Saves replay memory (attributes and arrays). ''' # Create out dir utils.make_dir(self.data_dir) print('Saving Memory data into Replay Memory Instance...') # Save property dict with open('{}/properties.json'.format(self.data_dir), 'w') as f: json.dump(self.to_dict(size), f) # Save arrays self._save_arrays(self.data_dir, size)
Example #7
Source File: meg_statistics.py From mmvt with GNU General Public License v3.0 | 5 votes |
def plot_perm_ttest_results(events_id, inverse_method='dSPM', plot_type='scatter_plot'): print('plot_perm_ttest_results') all_data = defaultdict(dict) fsave_vertices = [np.arange(10242), np.arange(10242)] fs_pts = mne.vertex_to_mni(fsave_vertices, [0, 1], 'fsaverage', LOCAL_SUBJECTS_DIR) # 0 for lh for cond_id, cond_name, patient, hc, data in patients_hcs_conds_gen(events_id, True, inverse_method): all_data[patient][hc] = data[()] print(all_data.keys()) for patient, pat_data in all_data.iteritems(): print(patient) fol = op.join(LOCAL_ROOT_DIR, 'permutation_ttest_results', patient) utils.make_dir(fol) if op.isfile(op.join(fol, 'perm_ttest_points.npz')): d = np.load(op.join(fol, 'perm_ttest_points.npz')) if plot_type == 'scatter_plot': points, values = d['points'][()], d['values'][()] elif plot_type == 'pysurfer': vertices, vertives_values = d['vertices'][()], d['vertives_values'][()] else: points, values, vertices, vertives_values = calc_points(pat_data, fs_pts) np.savez(op.join(fol, 'perm_ttest_points'), points=points, values=values, vertices=vertices, vertives_values=vertives_values) max_vals = 8 # int(np.percentile([max(v) for v in values.values()], 70)) print(max_vals) fol = op.join(fol, '{}_figures'.format(plot_type)) utils.make_dir(fol) if plot_type == 'scatter_plot': scatter_plot_perm_ttest_results(points, values, fs_pts, max_vals, fol) elif plot_type == 'pysurfer': pysurfer_plot_perm_ttest_results(vertices, vertives_values, max_vals, fol)
Example #8
Source File: meg_statistics.py From mmvt with GNU General Public License v3.0 | 5 votes |
def create_local_folds(): for fol in ['eop', 'evo', 'inv', 'stc', 'stc_epochs', 'stc_morphed', 'stc_epochs_morphed', 'stc_clusters', 'clusters_results', 'permutation_ttest_results', 'results_for_blender']: utils.make_dir(op.join(LOCAL_ROOT_DIR, fol))
Example #9
Source File: 11_char_rnn_gist.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def main(): vocab = ( " $%'()+,-./0123456789:;=?ABCDEFGHIJKLMNOPQRSTUVWXYZ" "\\^_abcdefghijklmnopqrstuvwxyz{|}") seq = tf.placeholder(tf.int32, [None, None]) temp = tf.placeholder(tf.float32) loss, sample, in_state, out_state = create_model(seq, temp, vocab) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') optimizer = tf.train.AdamOptimizer(LR).minimize(loss, global_step=global_step) utils.make_dir('checkpoints') utils.make_dir('checkpoints/arvix') training(vocab, seq, loss, optimizer, global_step, temp, sample, in_state, out_state)
Example #10
Source File: process_data.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def build_vocab(words, vocab_size): """ Build vocabulary of VOCAB_SIZE most frequent words """ dictionary = dict() count = [('UNK', -1)] count.extend(Counter(words).most_common(vocab_size - 1)) index = 0 utils.make_dir('processed') with open('processed/vocab_1000.tsv', "w") as f: for word, _ in count: dictionary[word] = index if index < 1000: f.write(word + "\n") index += 1 index_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return dictionary, index_dictionary
Example #11
Source File: style_transfer.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def main(): with tf.variable_scope('input') as scope: # use variable instead of placeholder because we're training the intial image to make it # look like both the content image and the style image input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32) utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES) utils.make_dir('checkpoints') utils.make_dir('outputs') model = vgg_model.load_vgg(VGG_MODEL, input_image) model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) content_image = content_image - MEAN_PIXELS style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) style_image = style_image - MEAN_PIXELS model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, input_image, content_image, style_image) ############################### ## TO DO: create optimizer ## model['optimizer'] = ... ############################### model['summary_op'] = _create_summary(model) initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, NOISE_RATIO) train(model, input_image, initial_image)
Example #12
Source File: style_transfer.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def main(): with tf.variable_scope('input') as scope: # use variable instead of placeholder because we're training the intial image to make it # look like both the content image and the style image input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32) utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES) utils.make_dir('checkpoints') utils.make_dir('outputs') model = vgg_model.load_vgg(VGG_MODEL, input_image) model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) content_image = content_image - MEAN_PIXELS style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) style_image = style_image - MEAN_PIXELS model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, input_image, content_image, style_image) ############################### ## TO DO: create optimizer model['optimizer'] = tf.train.AdamOptimizer(LR).minimize(model['total_loss'], global_step=model['global_step']) ############################### model['summary_op'] = _create_summary(model) initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, NOISE_RATIO) train(model, input_image, initial_image)
Example #13
Source File: 04_word2vec_visualize.py From stanford-tensorflow-tutorials with MIT License | 4 votes |
def train_model(model, batch_gen, num_train_steps, weights_fld): saver = tf.train.Saver() # defaults to saving all variables - in this case embed_matrix, nce_weight, nce_bias initial_step = 0 utils.make_dir('checkpoints') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint')) # if that checkpoint exists, restore from checkpoint if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) total_loss = 0.0 # we use this to calculate late average loss in the last SKIP_STEP steps writer = tf.summary.FileWriter('improved_graph/lr' + str(LEARNING_RATE), sess.graph) initial_step = model.global_step.eval() for index in range(initial_step, initial_step + num_train_steps): centers, targets = next(batch_gen) feed_dict={model.center_words: centers, model.target_words: targets} loss_batch, _, summary = sess.run([model.loss, model.optimizer, model.summary_op], feed_dict=feed_dict) writer.add_summary(summary, global_step=index) total_loss += loss_batch if (index + 1) % SKIP_STEP == 0: print('Average loss at step {}: {:5.1f}'.format(index, total_loss / SKIP_STEP)) total_loss = 0.0 saver.save(sess, 'checkpoints/skip-gram', index) #################### # code to visualize the embeddings. uncomment the below to visualize embeddings # run "'tensorboard --logdir='processed'" to see the embeddings # final_embed_matrix = sess.run(model.embed_matrix) # # it has to variable. constants don't work here. you can't reuse model.embed_matrix # embedding_var = tf.Variable(final_embed_matrix[:1000], name='embedding') # sess.run(embedding_var.initializer) # config = projector.ProjectorConfig() # summary_writer = tf.summary.FileWriter('processed') # # add embedding to the config file # embedding = config.embeddings.add() # embedding.tensor_name = embedding_var.name # # link this tensor to its metadata file, in this case the first 500 words of vocab # embedding.metadata_path = 'processed/vocab_1000.tsv' # # saves a configuration file that TensorBoard will read during startup. # projector.visualize_embeddings(summary_writer, config) # saver_embed = tf.train.Saver([embedding_var]) # saver_embed.save(sess, 'processed/model3.ckpt', 1)