Python numpy.frexp() Examples
The following are 30
code examples of numpy.frexp().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_decomp.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def clear_fuss(ar, fuss_binary_bits=7): """Clears trailing `fuss_binary_bits` of mantissa of a floating number""" x = np.asanyarray(ar) if np.iscomplexobj(x): return clear_fuss(x.real) + 1j * clear_fuss(x.imag) significant_binary_bits = np.finfo(x.dtype).nmant x_mant, x_exp = np.frexp(x) f = 2.0**(significant_binary_bits - fuss_binary_bits) x_mant *= f np.rint(x_mant, out=x_mant) x_mant /= f return np.ldexp(x_mant, x_exp) # XXX: This function should be available through numpy.testing
Example #2
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #3
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #4
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #5
Source File: test_umath.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #6
Source File: test_umath.py From coffeegrindsize with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #7
Source File: test_umath.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #8
Source File: test_arithmetic.py From mars with Apache License 2.0 | 6 votes |
def testFrexp(self): t1 = ones((3, 4, 5), chunk_size=2) t2 = empty((3, 4, 5), dtype=np.float_, chunk_size=2) op_type = type(t1.op) o1, o2 = frexp(t1) self.assertIs(o1.op, o2.op) self.assertNotEqual(o1.dtype, o2.dtype) o1, o2 = frexp(t1, t1) self.assertIs(o1, t1) self.assertIsNot(o1.inputs[0], t1) self.assertIsInstance(o1.inputs[0].op, op_type) self.assertIsNot(o2.inputs[0], t1) o1, o2 = frexp(t1, t2, where=t1 > 0) op_type = type(t2.op) self.assertIs(o1, t2) self.assertIsNot(o1.inputs[0], t1) self.assertIsInstance(o1.inputs[0].op, op_type) self.assertIsNot(o2.inputs[0], t1)
Example #9
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #10
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_failing_out_wrap(self): singleton = np.array([1.0]) class Ok(np.ndarray): def __array_wrap__(self, obj): return singleton class Bad(np.ndarray): def __array_wrap__(self, obj): raise RuntimeError ok = np.empty(1).view(Ok) bad = np.empty(1).view(Bad) # double-free (segfault) of "ok" if "bad" raises an exception for i in range(10): assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
Example #11
Source File: choice_calcs.py From pylogit with BSD 3-Clause "New" or "Revised" License | 6 votes |
def robust_outer_product(vec_1, vec_2): """ Calculates a 'robust' outer product of two vectors that may or may not contain very small values. Parameters ---------- vec_1 : 1D ndarray vec_2 : 1D ndarray Returns ------- outer_prod : 2D ndarray. The outer product of vec_1 and vec_2 """ mantissa_1, exponents_1 = np.frexp(vec_1) mantissa_2, exponents_2 = np.frexp(vec_2) new_mantissas = mantissa_1[None, :] * mantissa_2[:, None] new_exponents = exponents_1[None, :] + exponents_2[:, None] return new_mantissas * np.exp2(new_exponents)
Example #12
Source File: test_umath.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_doc(self): # don't bother checking the long list of kwargs, which are likely to # change assert_(ncu.add.__doc__.startswith( "add(x1, x2, /, out=None, *, where=True")) assert_(ncu.frexp.__doc__.startswith( "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
Example #13
Source File: test_umath.py From keras-lambda with MIT License | 5 votes |
def test_ufunc_override_out(self): # 2016-01-29: NUMPY_UFUNC_DISABLED return class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return kwargs class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return kwargs a = A() b = B() res0 = np.multiply(a, b, 'out_arg') res1 = np.multiply(a, b, out='out_arg') res2 = np.multiply(2, b, 'out_arg') res3 = np.multiply(3, b, out='out_arg') res4 = np.multiply(a, 4, 'out_arg') res5 = np.multiply(a, 5, out='out_arg') assert_equal(res0['out'], 'out_arg') assert_equal(res1['out'], 'out_arg') assert_equal(res2['out'], 'out_arg') assert_equal(res3['out'], 'out_arg') assert_equal(res4['out'], 'out_arg') assert_equal(res5['out'], 'out_arg') # ufuncs with multiple output modf and frexp. res6 = np.modf(a, 'out0', 'out1') res7 = np.frexp(a, 'out0', 'out1') assert_equal(res6['out'][0], 'out0') assert_equal(res6['out'][1], 'out1') assert_equal(res7['out'][0], 'out0') assert_equal(res7['out'][1], 'out1')
Example #14
Source File: test_mixins.py From coffeegrindsize with MIT License | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #15
Source File: k210_layer.py From Maix-EMC with Apache License 2.0 | 5 votes |
def pow_next_log_of_2_no_round(value, bound_shift, shift_max_shift=4): mul, shift = np.frexp(np.abs(value)) # value = mul(0~1)*(1 << shift) ret = bound_shift - 1 - shift # shift to full bound_shift mul = np.sign(value) * mul * np.power(2, bound_shift - 1) # scale mul # value = mul>>ret return ret, mul
Example #16
Source File: test_mixins.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #17
Source File: test_mixins.py From recruit with Apache License 2.0 | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #18
Source File: test_mixins.py From pySINDy with MIT License | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #19
Source File: test_umath.py From coffeegrindsize with MIT License | 5 votes |
def test_doc(self): # don't bother checking the long list of kwargs, which are likely to # change assert_(ncu.add.__doc__.startswith( "add(x1, x2, /, out=None, *, where=True")) assert_(ncu.frexp.__doc__.startswith( "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
Example #20
Source File: test_umath.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_doc(self): # don't bother checking the long list of kwargs, which are likely to # change assert_(ncu.add.__doc__.startswith( "add(x1, x2, /, out=None, *, where=True")) assert_(ncu.frexp.__doc__.startswith( "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
Example #21
Source File: _financial.py From numpy-financial with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _roots(p): """Modified version of NumPy's roots function. NumPy's roots uses the companion matrix method, which divides by p[0]. This can causes overflows/underflows. Instead form a modified companion matrix that is scaled by 2^c * p[0], where the exponent c is chosen to balance the magnitudes of the coefficients. Since scaling the matrix just scales the eigenvalues, we can remove the scaling at the end. Scaling by a power of 2 is chosen to avoid rounding errors. """ _, e = np.frexp(p) # Balance the most extreme exponents e_max and e_min by solving # the equation # # |c + e_max| = |c + e_min|. # # Round the exponent to an integer to avoid rounding errors. c = int(-0.5 * (np.max(e) + np.min(e))) p = np.ldexp(p, c) A = np.diag(np.full(p.size - 2, p[0]), k=-1) A[0,:] = -p[1:] eigenvalues = np.linalg.eigvals(A) return eigenvalues / p[0]
Example #22
Source File: utils.py From DeepHDR with MIT License | 5 votes |
def radiance_writer(out_path, image): with open(out_path, "wb") as f: f.write(b"#?RADIANCE\n# Made with Python & Numpy\nFORMAT=32-bit_rle_rgbe\n\n") f.write(b"-Y %d +X %d\n" %(image.shape[0], image.shape[1])) brightest = np.maximum(np.maximum(image[...,0], image[...,1]), image[...,2]) mantissa = np.zeros_like(brightest) exponent = np.zeros_like(brightest) np.frexp(brightest, mantissa, exponent) scaled_mantissa = mantissa * 255.0 / brightest rgbe = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) rgbe[...,0:3] = np.around(image[...,0:3] * scaled_mantissa[...,None]) rgbe[...,3] = np.around(exponent + 128) rgbe.flatten().tofile(f)
Example #23
Source File: test_umath.py From ImageFusion with MIT License | 5 votes |
def test_out_subok(self): for b in (True, False): aout = np.array(0.5) r = np.add(aout, 2, out=aout) assert_(r is aout) assert_array_equal(r, aout) r = np.add(aout, 2, out=aout, subok=b) assert_(r is aout) assert_array_equal(r, aout) r = np.add(aout, 2, aout, subok=False) assert_(r is aout) assert_array_equal(r, aout) d = np.ones(5) o1 = np.zeros(5) o2 = np.zeros(5, dtype=np.int32) r1, r2 = np.frexp(d, o1, o2, subok=b) assert_(r1 is o1) assert_array_equal(r1, o1) assert_(r2 is o2) assert_array_equal(r2, o2) r1, r2 = np.frexp(d, out=o1, subok=b) assert_(r1 is o1) assert_array_equal(r1, o1)
Example #24
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_doc(self): # don't bother checking the long list of kwargs, which are likely to # change assert_(ncu.add.__doc__.startswith( "add(x1, x2, /, out=None, *, where=True")) assert_(ncu.frexp.__doc__.startswith( "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
Example #25
Source File: test_quantity_ufuncs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_frexp_scalar(self): q = np.frexp(3. * u.m / (6. * u.m)) assert q == (np.array(0.5), np.array(0.0))
Example #26
Source File: test_umath.py From ImageFusion with MIT License | 5 votes |
def test_ufunc_override_out(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return kwargs class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return kwargs a = A() b = B() res0 = np.multiply(a, b, 'out_arg') res1 = np.multiply(a, b, out='out_arg') res2 = np.multiply(2, b, 'out_arg') res3 = np.multiply(3, b, out='out_arg') res4 = np.multiply(a, 4, 'out_arg') res5 = np.multiply(a, 5, out='out_arg') assert_equal(res0['out'], 'out_arg') assert_equal(res1['out'], 'out_arg') assert_equal(res2['out'], 'out_arg') assert_equal(res3['out'], 'out_arg') assert_equal(res4['out'], 'out_arg') assert_equal(res5['out'], 'out_arg') # ufuncs with multiple output modf and frexp. res6 = np.modf(a, 'out0', 'out1') res7 = np.frexp(a, 'out0', 'out1') assert_equal(res6['out'][0], 'out0') assert_equal(res6['out'][1], 'out1') assert_equal(res7['out'][0], 'out0') assert_equal(res7['out'][1], 'out1')
Example #27
Source File: test_quantity_ufuncs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_frexp_array(self): q = np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert all((_q0, _q1) == np.frexp(_d) for _q0, _q1, _d in zip(q[0], q[1], [1. / 3., 1. / 2., 1.]))
Example #28
Source File: test_mixins.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #29
Source File: test_mixins.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_ufunc_two_outputs(self): mantissa, exponent = np.frexp(2 ** -3) expected = (ArrayLike(mantissa), ArrayLike(exponent)) _assert_equal_type_and_value( np.frexp(ArrayLike(2 ** -3)), expected) _assert_equal_type_and_value( np.frexp(ArrayLike(np.array(2 ** -3))), expected)
Example #30
Source File: test_floating.py From cupy with MIT License | 5 votes |
def test_frexp(self, dtype): numpy_a = numpy.array([-300, -20, -10, -1, 0, 1, 10, 20, 300], dtype=dtype) numpy_b, numpy_c = numpy.frexp(numpy_a) cupy_a = cupy.array(numpy_a) cupy_b, cupy_c = cupy.frexp(cupy_a) testing.assert_array_equal(cupy_b, numpy_b) testing.assert_array_equal(cupy_c, numpy_c)