Python numpy.fmin() Examples
The following are 30
code examples of numpy.fmin().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_umath.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #2
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #3
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #4
Source File: nomo_axis_func.py From pynomo with GNU General Public License v3.0 | 6 votes |
def optimize_transformation(self): """ returns optimal transformation """ x0 = [1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0] self._add_params_trafo_stack_(x0) print("starts optimizing...") np.fmin(self._calc_min_func_, x0, full_output=1, maxiter=2000) # self.alpha1=self.multiplier_x*self.alpha1 # self.beta1=self.multiplier_x*self.beta1 # self.gamma1=self.multiplier_x*self.gamma1 # self.alpha2=self.multiplier_y*self.alpha2 # self.beta2=self.multiplier_y*self.beta2 # self.gamma2=self.multiplier_y*self.gamma2 self._set_transformation_to_all_axis_() # self._calc_bounding_box_() # self._trafo_to_paper_()
Example #5
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #6
Source File: test_ufunc.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #7
Source File: test_umath.py From vnpy_crypto with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #8
Source File: test_ufunc.py From vnpy_crypto with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #9
Source File: test_umath.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #10
Source File: test_ufunc.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #11
Source File: test_umath.py From Computable with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #12
Source File: ml_agent.py From Grid2Op with Mozilla Public License 2.0 | 6 votes |
def predict_movement(self, data, epsilon): rand_val = np.random.random(data.shape[0]) # q_actions = self.model.predict(data) p_actions = self.model_policy.predict(data) opt_policy_orig = np.argmax(np.abs(p_actions), axis=-1) opt_policy = 1.0 * opt_policy_orig opt_policy[rand_val < epsilon] = np.random.randint(0, self.action_size, size=(np.sum(rand_val < epsilon))) # store the qvalue_evolution (lots of computation time maybe here) tmp = np.zeros((data.shape[0], self.action_size)) tmp[np.arange(data.shape[0]), opt_policy_orig] = 1.0 q_actions0 = self.model_Q.predict([data, tmp]) q_actions2 = self.model_Q2.predict([data, tmp]) q_actions = np.fmin(q_actions0, q_actions2).reshape(-1) self.qvalue_evolution = np.concatenate((self.qvalue_evolution, q_actions)) # above is not mandatory for predicting a movement so, might need to be moved somewhere else... opt_policy = opt_policy.astype(np.int) return opt_policy, p_actions[:, opt_policy]
Example #13
Source File: test_ufunc.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #14
Source File: test_ufunc.py From pySINDy with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #15
Source File: fof.py From nbodykit with GNU General Public License v3.0 | 6 votes |
def _fof_local(layout, pos, boxsize, ll, comm): from kdcount import cluster N = len(pos) pos = layout.exchange(pos) if boxsize is not None: pos %= boxsize data = cluster.dataset(pos, boxsize=boxsize) fof = cluster.fof(data, linking_length=ll, np=0) labels = fof.labels del fof PID = numpy.arange(N, dtype='intp') PID += numpy.sum(comm.allgather(N)[:comm.rank], dtype='intp') PID = layout.exchange(PID) # initialize global labels minid = equiv_class(labels, PID, op=numpy.fmin)[labels] return minid
Example #16
Source File: test_ufunc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #17
Source File: test_ufunc.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #18
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #19
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1)
Example #20
Source File: statistics.py From esmlab with Apache License 2.0 | 6 votes |
def compute_corr_significance(r, N): """ Compute statistical significance for a pearson correlation between two xarray objects. Parameters ---------- r : `xarray.DataArray` object correlation coefficient between two time series. N : int length of time series being correlated. Returns ------- pval : float p value for pearson correlation. """ df = N - 2 t_squared = r ** 2 * (df / ((1.0 - r) * (1.0 + r))) # method used in scipy, where `np.fmin` constrains values to be # below 1 due to errors in floating point arithmetic. pval = special.betainc(0.5 * df, 0.5, np.fmin(df / (df + t_squared), 1.0)) return xr.DataArray(pval, coords=t_squared.coords, dims=t_squared.dims)
Example #21
Source File: test_funcs.py From evalset with MIT License | 5 votes |
def __init__(self, func, constraint_weights, constraint_rhs, constraint_check=None, return_nan=True, verify=True): assert isinstance(func, TestFunction) assert len(constraint_weights) == len(constraint_rhs) super(Constrainer, self).__init__(func.dim, verify) self.bounds, self.min_loc, self.fmax, self.fmin = func.bounds, func.min_loc, func.fmax, func.fmin self.func = func self.constraint_weights = constraint_weights self.constraint_rhs = constraint_rhs self.return_nan = return_nan self.classifiers = list(set(self.classifiers) | set(['constraint'])) if constraint_check is not None: self.constraint_check = constraint_check else: self.constraint_check = Constrainer.default_constraint_check
Example #22
Source File: test_funcs.py From evalset with MIT License | 5 votes |
def __init__(self, func, res, verify=True): assert isinstance(func, TestFunction) if res <= 0: raise ValueError('Resolution level must be positive, level={0}'.format(res)) super(Discretizer, self).__init__(func.dim, verify) self.bounds, self.min_loc = func.bounds, func.min_loc self.res = res self.fmax = numpy.floor(self.res * func.fmax) / self.res self.fmin = numpy.floor(self.res * func.fmin) / self.res self.func = func self.classifiers = list(set(self.classifiers) | set(['discrete']))
Example #23
Source File: test_funcs.py From evalset with MIT License | 5 votes |
def __init__(self, func, fail_indicator, return_nan=True, verify=True): assert isinstance(func, TestFunction) super(Failifier, self).__init__(func.dim, verify) self.bounds, self.min_loc, self.fmax, self.fmin = func.bounds, func.min_loc, func.fmax, func.fmin self.func = func self.fail_indicator = fail_indicator self.return_nan = return_nan self.classifiers = list(set(self.classifiers) | set(['failure']))
Example #24
Source File: IOU.py From Re3 with GNU General Public License v3.0 | 5 votes |
def IOU_numpy(rects1, rect2): #intersection = np.fmin(np.zeros((rects1.shape[0],1)) (d, n) = rects1.shape x1s = np.fmax(rects1[:,0], rect2[0]) x2s = np.fmin(rects1[:,2], rect2[2]) y1s = np.fmax(rects1[:,1], rect2[1]) y2s = np.fmin(rects1[:,3], rect2[3]) ws = np.fmax(x2s - x1s, 0) hs = np.fmax(y2s - y1s, 0) intersection = ws * hs rects1Area = (rects1[:,2] - rects1[:,0]) * (rects1[:,3] - rects1[:,1]) rect2Area = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) union = np.fmax(rects1Area + rect2Area - intersection, .00001) return intersection * 1.0 / union
Example #25
Source File: kdtree.py From nbodykit with GNU General Public License v3.0 | 5 votes |
def run(self): """ Compute the density proxy. This attaches the following attribute: - :attr:`density` Attributes ---------- density : array_like, length: :attr:`size` a unit-less, proxy density value for each object on the local rank. This is computed as the inverse cube of the distance to the closest, nearest neighbor """ # do the domain decomposition Np = split_size_3d(self.comm.size) edges = [numpy.linspace(0, self.attrs['BoxSize'][d], Np[d] + 1, endpoint=True) for d in range(3)] domain = GridND(comm=self.comm, periodic=True, edges=edges) # read all position and exchange pos = self._source.compute(self._source['Position']) layout = domain.decompose(pos, smoothing=self.attrs['margin'] * self.attrs['meansep']) xpos = layout.exchange(pos) # wait for scipy 0.19.1 assert all(self.attrs['BoxSize'] == self.attrs['BoxSize'][0]) xpos[...] /= self.attrs['BoxSize'] xpos %= 1 # KDTree tree = KDTree(xpos, boxsize=1.0) d, i = tree.query(xpos, k=[8]) d = d[:, 0] # gather back to original root, taking the minimum distance d = layout.gather(d, mode=numpy.fmin) self.density = 1 / (d ** 3 * self.attrs['BoxSize'].prod())
Example #26
Source File: fof.py From nbodykit with GNU General Public License v3.0 | 5 votes |
def _fof_merge(layout, minid, comm): # generate global halo id while True: # merge, if a particle belongs to several ranks # use the global label of the minimal minid_new = layout.gather(minid, mode=numpy.fmin) minid_new = layout.exchange(minid_new) # on my rank, these particles have been merged merged = minid_new != minid # if no rank has merged any, we are done # gl is the global label (albeit with some holes) total = comm.allreduce(merged.sum()) if total == 0: del minid_new break old = minid[merged] new = minid_new[merged] arg = old.argsort() new = new[arg] old = old[arg] replacesorted(minid, old, new, out=minid) minid = layout.gather(minid, mode=numpy.fmin) return minid
Example #27
Source File: IOU.py From Re3 with GNU General Public License v3.0 | 5 votes |
def count_overlapping_boxes(rects1, rect2, overlapThresh=.001): if rects1.shape[1] == 0: return 0 x1s = np.fmax(rects1[:,0], rect2[0]) x2s = np.fmin(rects1[:,2], rect2[2]) y1s = np.fmax(rects1[:,1], rect2[1]) y2s = np.fmin(rects1[:,3], rect2[3]) ws = np.fmax(x2s - x1s, 0) hs = np.fmax(y2s - y1s, 0) intersection = ws * hs rects1Area = (rects1[:,2] - rects1[:,0]) * (rects1[:,3] - rects1[:,1]) rect2Area = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) union = np.fmax(rects1Area + rect2Area - intersection, .00001) ious = intersection * 1.0 / union return np.sum(ious > overlapThresh)
Example #28
Source File: IOU.py From Re3 with GNU General Public License v3.0 | 5 votes |
def get_overlapping_boxes(rects1, rect2, overlapThresh=.001): x1s = np.fmax(rects1[:,0], rect2[0]) x2s = np.fmin(rects1[:,2], rect2[2]) y1s = np.fmax(rects1[:,1], rect2[1]) y2s = np.fmin(rects1[:,3], rect2[3]) ws = np.fmax(x2s - x1s, 0) hs = np.fmax(y2s - y1s, 0) intersection = ws * hs rects1Area = (rects1[:,2] - rects1[:,0]) * (rects1[:,3] - rects1[:,1]) rect2Area = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) union = np.fmax(rects1Area + rect2Area - intersection, .00001) ious = intersection * 1.0 / union rects1[:,4] = ious rects1 = rects1[ious > overlapThresh, :] return rects1
Example #29
Source File: IOU.py From Re3 with GNU General Public License v3.0 | 5 votes |
def IOU_lists(rects1, rects2): (d, n) = rects1.shape x1s = np.fmax(rects1[:,0], rects2[:,0]) x2s = np.fmin(rects1[:,2], rects2[:,2]) y1s = np.fmax(rects1[:,1], rects2[:,1]) y2s = np.fmin(rects1[:,3], rects2[:,3]) ws = np.fmax(x2s - x1s, 0) hs = np.fmax(y2s - y1s, 0) intersection = ws * hs rects1Area = (rects1[:,2] - rects1[:,0]) * (rects1[:,3] - rects1[:,1]) rects2Area = (rects2[:,2] - rects2[:,0]) * (rects2[:,3] - rects2[:,1]) union = np.fmax(rects1Area + rects2Area - intersection, .00001) return intersection * 1.0 / union # Rectangles are [x1, y1, x2, y2]
Example #30
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_reduce_complex(self): assert_equal(np.fmin.reduce([1, 2j]), 2j) assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)