Python numpy.common_type() Examples

The following are 30 code examples of numpy.common_type(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: test_linalg.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #2
Source File: test_linalg.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #3
Source File: test_linalg.py    From ImageFusion with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #4
Source File: test_linalg.py    From mxnet-lambda with Apache License 2.0 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #5
Source File: test_linalg.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #6
Source File: test_linalg.py    From pySINDy with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #7
Source File: __init__.py    From cupy with MIT License 6 votes vote down vote up
def common_type(*arrays):
    """Return a scalar type which is common to the input arrays.

    .. seealso:: :func:`numpy.common_type`
    """
    if len(arrays) == 0:
        return numpy.float16

    default_float_dtype = numpy.dtype('float64')
    dtypes = []
    for a in arrays:
        if a.dtype.kind == 'b':
            raise TypeError('can\'t get common type for non-numeric array')
        elif a.dtype.kind in 'iu':
            dtypes.append(default_float_dtype)
        else:
            dtypes.append(a.dtype)

    return functools.reduce(numpy.promote_types, dtypes).type 
Example #8
Source File: test_arithmetic.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_df_arith_2d_array_collike_broadcasts(self,
                                                  all_arithmetic_operators):
        # GH#23000
        opname = all_arithmetic_operators

        arr = np.arange(6).reshape(3, 2)
        df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C'])

        collike = arr[:, [1]]  # shape --> (nrows, 1)
        assert collike.shape == (df.shape[0], 1)

        exvals = {True: getattr(df[True], opname)(collike.squeeze()),
                  False: getattr(df[False], opname)(collike.squeeze())}

        dtype = None
        if opname in ['__rmod__', '__rfloordiv__']:
            # Series ops may return mixed int/float dtypes in cases where
            #   DataFrame op will return all-float.  So we upcast `expected`
            dtype = np.common_type(*[x.values for x in exvals.values()])

        expected = pd.DataFrame(exvals, columns=df.columns, index=df.index,
                                dtype=dtype)

        result = getattr(df, opname)(collike)
        tm.assert_frame_equal(result, expected) 
Example #9
Source File: test_linalg.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #10
Source File: test_linalg.py    From GraphicDesignPatternByPython with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #11
Source File: test_linalg.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #12
Source File: test_linalg.py    From Computable with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #13
Source File: test_linalg.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #14
Source File: test_linalg.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #15
Source File: test_linalg.py    From lambda-packs with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #16
Source File: test_linalg.py    From keras-lambda with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #17
Source File: test_linalg.py    From recruit with Apache License 2.0 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #18
Source File: random_test.py    From tenpy with GNU General Public License v3.0 6 votes vote down vote up
def random_MPS(L, d, chimax, func=randmat.standard_normal_complex, bc='finite', form='B'):
    site = Site(charges.LegCharge.from_trivial(d))
    chi = [chimax] * (L + 1)
    if bc == 'finite':
        for i in range(L // 2 + 1):
            chi[i] = chi[L - i] = min(chi[i], d**i)
    Bs = []
    for i in range(L):
        B = func((d, chi[i], chi[i + 1]))
        B /= np.sqrt(chi[i + 1]) * d
        Bs.append(B)
    dtype = np.common_type(*Bs)
    psi = MPS.from_Bflat([site] * L, Bs, bc=bc, dtype=dtype, form=None)
    if form is not None:
        psi.canonical_form()
        psi.convert_form(form)
    return psi 
Example #19
Source File: test_linalg.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b) 
Example #20
Source File: test_arithmetic.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_df_arith_2d_array_collike_broadcasts(self,
                                                  all_arithmetic_operators):
        # GH#23000
        opname = all_arithmetic_operators

        arr = np.arange(6).reshape(3, 2)
        df = pd.DataFrame(arr, columns=[True, False], index=['A', 'B', 'C'])

        collike = arr[:, [1]]  # shape --> (nrows, 1)
        assert collike.shape == (df.shape[0], 1)

        exvals = {True: getattr(df[True], opname)(collike.squeeze()),
                  False: getattr(df[False], opname)(collike.squeeze())}

        dtype = None
        if opname in ['__rmod__', '__rfloordiv__']:
            # Series ops may return mixed int/float dtypes in cases where
            #   DataFrame op will return all-float.  So we upcast `expected`
            dtype = np.common_type(*[x.values for x in exvals.values()])

        expected = pd.DataFrame(exvals, columns=df.columns, index=df.index,
                                dtype=dtype)

        result = getattr(df, opname)(collike)
        tm.assert_frame_equal(result, expected) 
Example #21
Source File: test_quantity_non_ufuncs.py    From Carnets with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_common_type(self):
        self.check(np.common_type) 
Example #22
Source File: kproxy_supercell.py    From pyscf with Apache License 2.0 5 votes vote down vote up
def sparse_transform(m, *args):
    """
    Performs a sparse transform of a dense tensor.
    Args:
        m (ndarray): a tensor to transform;
        *args: alternating indexes and bases to transform into;

    Returns:
        The transformed tensor.
    """
    result = m
    for i, (index, basis) in enumerate(zip(args[::2], args[1::2])):

        if len(basis.shape) != 2:
            raise ValueError("Transform {:d} is not a matrix: shape = {}".format(
                i, repr(basis.shape)
            ))
        if result.shape[index] != basis.shape[0]:
            raise ValueError("Dimension mismatch of transform {:d}: m.shape[{:d}] = {:d} != basis.shape[0] = {:d}".format(
                i, index, result.shape[index], basis.shape[0],
            ))
        if "getcol" not in dir(basis):
            raise ValueError("No 'getcol' in the transform matrix {:d}: not a CSC sparse matrix?")

        result_shape = result.shape[:index] + (basis.shape[1],) + result.shape[index + 1:]
        new_result = numpy.zeros(result_shape, numpy.common_type(*(
            args[1::2] + (m,)
        )))
        for b2 in range(basis.shape[1]):
            slice_b2 = (slice(None),) * index + (b2,)
            col = basis.getcol(b2)
            for b1 in col.nonzero()[0]:
                slice_b1 = (slice(None),) * index + (b1,)
                new_result[slice_b2] += col[b1, 0] * result[slice_b1]
        result = new_result

    return result 
Example #23
Source File: kproxy_supercell.py    From pyscf with Apache License 2.0 5 votes vote down vote up
def get_sparse_ov_transform(oo, vv):
    """
    Retrieves a sparse `ovov` transform out of sparse `oo` and `vv` transforms.
    Args:
        oo (ndarray): the transformation in the occupied space;
        vv (ndarray): the transformation in the virtual space;

    Returns:
        The resulting matrix representing the sparse transform in the `ov` space.
    """
    i, a = oo.shape
    j, b = vv.shape

    # If the input is dense the result is simply
    # return (oo[:, numpy.newaxis, :, numpy.newaxis] * vv[numpy.newaxis, :, numpy.newaxis, :]).reshape(i*j, a*b)

    result_data = numpy.zeros(oo.nnz * vv.nnz, dtype=numpy.common_type(oo, vv))
    result_indices = numpy.zeros(len(result_data), dtype=int)
    result_indptr = numpy.zeros(a * b + 1, dtype=int)

    ptr_counter = 0
    for i_a in range(a):
        oo_col = oo.getcol(i_a)
        assert tuple(oo_col.indptr.tolist()) == (0, len(oo_col.data))
        i_i, oo_col_v = oo_col.indices, oo_col.data
        for i_b in range(b):
            vv_col = vv.getcol(i_b)
            assert tuple(vv_col.indptr.tolist()) == (0, len(vv_col.data))
            i_j, vv_col_v = vv_col.indices, vv_col.data

            data_length = len(i_i) * len(i_j)
            result_indices[ptr_counter:ptr_counter + data_length] = ((i_i * j)[:, numpy.newaxis] + i_j[numpy.newaxis, :]).reshape(-1)
            result_data[ptr_counter:ptr_counter + data_length] = (oo_col_v[:, numpy.newaxis] * vv_col_v[numpy.newaxis, :]).reshape(-1)
            result_indptr[i_a * b + i_b] = ptr_counter

            ptr_counter += data_length

    result_indptr[-1] = ptr_counter
    return sparse.csc_matrix((result_data, result_indices, result_indptr)) 
Example #24
Source File: test_common.py    From pyscf with Apache License 2.0 5 votes vote down vote up
def remove_phase_difference(v1, v2, axis=0, threshold=1e-5):
    """Removes the phase difference between two vectors."""
    dtype = numpy.common_type(numpy.asarray(v1), numpy.asarray(v2))
    v1, v2 = numpy.array(v1, dtype=dtype), numpy.array(v2, dtype=dtype)
    v1, v2 = pull_dim(v1, axis), pull_dim(v2, axis)
    v2 /= phase_difference(v1, v2, threshold=threshold)[:, numpy.newaxis]
    return v1, v2 
Example #25
Source File: test_common.py    From pyscf with Apache License 2.0 5 votes vote down vote up
def remove_phase_difference(v1, v2, axis=0, threshold=1e-5):
    """Removes the phase difference between two vectors."""
    dtype = numpy.common_type(numpy.asarray(v1), numpy.asarray(v2))
    v1, v2 = numpy.array(v1, dtype=dtype), numpy.array(v2, dtype=dtype)
    v1, v2 = pull_dim(v1, axis), pull_dim(v2, axis)
    v2 /= phase_difference(v1, v2, threshold=threshold)[:, numpy.newaxis]
    return v1, v2 
Example #26
Source File: test_common.py    From pyscf with Apache License 2.0 5 votes vote down vote up
def remove_phase_difference(v1, v2, axis=0, threshold=1e-5):
    """Removes the phase difference between two vectors."""
    dtype = numpy.common_type(numpy.asarray(v1), numpy.asarray(v2))
    v1, v2 = numpy.array(v1, dtype=dtype), numpy.array(v2, dtype=dtype)
    v1, v2 = pull_dim(v1, axis), pull_dim(v2, axis)
    v2 /= phase_difference(v1, v2, threshold=threshold)[:, numpy.newaxis]
    return v1, v2 
Example #27
Source File: test_array_function.py    From cupy with MIT License 5 votes vote down vote up
def test_array_function_common_type(self, xp):
        return numpy.common_type(xp.arange(2, dtype='f8'),
                                 xp.arange(2, dtype='f4')) 
Example #28
Source File: mparray.py    From mpnum with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def dtype(self):
        """Returns the dtype that should be returned by ``to_array``"""
        return np.common_type(*tuple(self._lt)) 
Example #29
Source File: utils.py    From coffeegrindsize with MIT License 4 votes vote down vote up
def nulp_diff(x, y, dtype=None):
    """For each item in x and y, return the number of representable floating
    points between them.

    Parameters
    ----------
    x : array_like
        first input array
    y : array_like
        second input array
    dtype : dtype, optional
        Data-type to convert `x` and `y` to if given. Default is None.

    Returns
    -------
    nulp : array_like
        number of representable floating point numbers between each item in x
        and y.

    Examples
    --------
    # By definition, epsilon is the smallest number such as 1 + eps != 1, so
    # there should be exactly one ULP between 1 and 1 + eps
    >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
    1.0
    """
    import numpy as np
    if dtype:
        x = np.array(x, dtype=dtype)
        y = np.array(y, dtype=dtype)
    else:
        x = np.array(x)
        y = np.array(y)

    t = np.common_type(x, y)
    if np.iscomplexobj(x) or np.iscomplexobj(y):
        raise NotImplementedError("_nulp not implemented for complex array")

    x = np.array(x, dtype=t)
    y = np.array(y, dtype=t)

    if not x.shape == y.shape:
        raise ValueError("x and y do not have the same shape: %s - %s" %
                         (x.shape, y.shape))

    def _diff(rx, ry, vdt):
        diff = np.array(rx-ry, dtype=vdt)
        return np.abs(diff)

    rx = integer_repr(x)
    ry = integer_repr(y)
    return _diff(rx, ry, t) 
Example #30
Source File: utils.py    From Carnets with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def nulp_diff(x, y, dtype=None):
    """For each item in x and y, return the number of representable floating
    points between them.

    Parameters
    ----------
    x : array_like
        first input array
    y : array_like
        second input array
    dtype : dtype, optional
        Data-type to convert `x` and `y` to if given. Default is None.

    Returns
    -------
    nulp : array_like
        number of representable floating point numbers between each item in x
        and y.

    Examples
    --------
    # By definition, epsilon is the smallest number such as 1 + eps != 1, so
    # there should be exactly one ULP between 1 and 1 + eps
    >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
    1.0
    """
    import numpy as np
    if dtype:
        x = np.array(x, dtype=dtype)
        y = np.array(y, dtype=dtype)
    else:
        x = np.array(x)
        y = np.array(y)

    t = np.common_type(x, y)
    if np.iscomplexobj(x) or np.iscomplexobj(y):
        raise NotImplementedError("_nulp not implemented for complex array")

    x = np.array(x, dtype=t)
    y = np.array(y, dtype=t)

    if not x.shape == y.shape:
        raise ValueError("x and y do not have the same shape: %s - %s" %
                         (x.shape, y.shape))

    def _diff(rx, ry, vdt):
        diff = np.array(rx-ry, dtype=vdt)
        return np.abs(diff)

    rx = integer_repr(x)
    ry = integer_repr(y)
    return _diff(rx, ry, t)