Python numpy.Infinity() Examples
The following are 9
code examples of numpy.Infinity().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_constants.py From chainer with MIT License | 6 votes |
def test_constants(): assert chainerx.Inf is numpy.Inf assert chainerx.Infinity is numpy.Infinity assert chainerx.NAN is numpy.NAN assert chainerx.NINF is numpy.NINF assert chainerx.NZERO is numpy.NZERO assert chainerx.NaN is numpy.NaN assert chainerx.PINF is numpy.PINF assert chainerx.PZERO is numpy.PZERO assert chainerx.e is numpy.e assert chainerx.euler_gamma is numpy.euler_gamma assert chainerx.inf is numpy.inf assert chainerx.infty is numpy.infty assert chainerx.nan is numpy.nan assert chainerx.newaxis is numpy.newaxis assert chainerx.pi is numpy.pi
Example #2
Source File: graph.py From PyGraphArt with MIT License | 6 votes |
def prim(self): ''' Returns Prim's minimum spanninng tree ''' big_f = set([]) costs = np.empty((self.n), dtype=object) costs[:] = np.max(self.costs) + 1 big_e = np.empty((self.n), dtype=object) big_q = set(range(self.n)) tree_edges = np.array([], dtype=object) while len(big_q) > 0: v = np.argmin(costs) big_q.remove(v) costs[v] = np.Infinity big_f.add(v) if big_e[v] is not None: tree_edges = np.append(tree_edges, None) tree_edges[-1] = (big_e[v], v) for i, w in zip(range(len(self.FSs[v])), self.FSs[v]): if w in big_q and self.FS_costs[v][i] < costs[w]: costs[w] = self.FS_costs[v][i] big_e[w] = v return tree_edges
Example #3
Source File: anonymity.py From anonymisation with GNU General Public License v3.0 | 6 votes |
def get_k(df, groupby, unknown=None): """ Return the k-anonymity level of a df, grouped by the specified columns. :param df: The dataframe to get k from :param groupby: The columns to group by :type df: pandas.DataFrame :type groupby: Array :return: k-anonymity :rtype: int """ df = _remove_unknown(df, groupby, unknown) size_group = df.groupby(groupby).size() if len(size_group) == 0: return np.Infinity return min(size_group)
Example #4
Source File: graph.py From PyGraphArt with MIT License | 5 votes |
def bellman_ford(self, source): ''' Returns Labels-algorithm's shortest paths from source to all other nodes, if the (directed) graph doesn't contains cycles ''' if self.oriented is False: print 'cannot apply bellman_ford, graph is not oriented' return dist = np.array([np.Infinity for x in range(self.n)], dtype=np.float32) pred = np.empty((self.n), dtype=np.int) pred[source] = source dist[source] = 0 for i in np.arange(1, self.n): for e in range(len(self.edges)): if dist[self.edges[e][0]] + self.costs[e] < dist[self.edges[e][1]]: dist[self.edges[e][1]] = dist[ self.edges[e][0]] + self.costs[e] pred[self.edges[e][1]] = self.edges[e][0] for e in range(len(self.edges)): if dist[self.edges[e][1]] > dist[self.edges[e][0]] + self.costs[e]: print 'Error, Graph contains a negative-weight cycle' break edges = np.array([], dtype=object) for v in range(len(pred)): edges = np.append(edges, None) edges[-1] = [pred[v], v] return edges # , prev, dist
Example #5
Source File: graph.py From PyGraphArt with MIT License | 5 votes |
def floyd_warshall(self, source): ''' Returns floyd_warshall's shortest paths from source to all other nodes, if the (directed) graph doesn't contains negative cycles ''' print '''warning! apply this algorithm only if constricted, it takes\\ O(n^3)!''' print 'O(n^3) = O(', self.n**3, ')' dist = np.empty((self.n, self.n), dtype=np.float32) pred = np.zeros((self.n, self.n), dtype=np.int) dist.fill(np.Infinity) for v in range(self.n): dist[v][v] = .0 for e in range(len(self.edges)): u = self.edges[e][0] v = self.edges[e][1] dist[u][v] = self.costs[e] pred[u][v] = v for h in range(1, self.n): for i in range(1, self.n): for j in range(self.n): if dist[i][h] + dist[h][j] < dist[i][j]: dist[i][j] = dist[i][h] + dist[h][j] pred[i][j] = pred[h][j] for i in range(1, self.n): if dist[i][i] < 0: print 'Error! found negative cycle, thus the problem is inferiorly unlinmited' return edges = np.array([], dtype=object) for v in range(len(pred)): edges = np.append(edges, None) edges[-1] = [pred[source][v], v] return edges # , prev, dist
Example #6
Source File: text_models.py From mindmeld with Apache License 2.0 | 5 votes |
def predict_log_proba(self, examples, dynamic_resource=None): X, _, _ = self.get_feature_matrix(examples, dynamic_resource=dynamic_resource) predictions = self._predict_proba(X, self._clf.predict_log_proba) # JSON can't reliably encode infinity, so replace it with large number for row in predictions: _, probas = row for label, proba in probas.items(): if proba == -np.Infinity: probas[label] = _NEG_INF return predictions
Example #7
Source File: regression.py From open_model_zoo with Apache License 2.0 | 5 votes |
def _psnr_differ(self, annotation_image, prediction_image): prediction = np.asarray(prediction_image).astype(np.float) ground_truth = np.asarray(annotation_image).astype(np.float) height, width = prediction.shape[:2] prediction = prediction[ self.scale_border:height - self.scale_border, self.scale_border:width - self.scale_border ] ground_truth = ground_truth[ self.scale_border:height - self.scale_border, self.scale_border:width - self.scale_border ] image_difference = (prediction - ground_truth) / 255. # rgb color space r_channel_diff = image_difference[:, :, self.channel_order[0]] g_channel_diff = image_difference[:, :, self.channel_order[1]] b_channel_diff = image_difference[:, :, self.channel_order[2]] channels_diff = (r_channel_diff * 65.738 + g_channel_diff * 129.057 + b_channel_diff * 25.064) / 256 mse = np.mean(channels_diff ** 2) if mse == 0: return np.Infinity return -10 * math.log10(mse)
Example #8
Source File: utils.py From molml with MIT License | 4 votes |
def get_coulomb_matrix(numbers, coords, alpha=1, use_decay=False): r""" Return the coulomb matrix for the given coords and numbers. .. math:: C_{ij} = \begin{cases} \frac{Z_i Z_j}{\| r_i - r_j \|^\alpha} & i \neq j\\ \frac{1}{2} Z_i^{2.4} & i = j \end{cases} Parameters ---------- numbers : array-like, shape=(n_atoms, ) The atomic numbers of all the atoms coords : array-like, shape=(n_atoms, 3) The xyz coordinates of all the atoms (in angstroms) alpha : number, default=6 Some value to exponentiate the distance in the coulomb matrix. use_decay : bool, default=False This setting defines an extra decay for the values as they get futher away from the "central atom". This is to alleviate issues the arise as atoms enter or leave the cutoff radius. Returns ------- top : array, shape=(n_atoms, n_atoms) The coulomb matrix """ top = numpy.outer(numbers, numbers).astype(numpy.float64) r = cdist(coords, coords) if use_decay: other = cdist([coords[0]], coords).reshape(-1) r += numpy.add.outer(other, other) r **= alpha with numpy.errstate(divide='ignore', invalid='ignore'): numpy.divide(top, r, top) numpy.fill_diagonal(top, 0.5 * numpy.array(numbers) ** 2.4) top[top == numpy.Infinity] = 0 top[numpy.isnan(top)] = 0 return top
Example #9
Source File: epmgp.py From emukit with Apache License 2.0 | 3 votes |
def lt_factor(s, l, M, V, mp, p, gamma): cVc = (V[l, l] - 2 * V[s, l] + V[s, s]) / 2.0 Vc = (V[:, l] - V[:, s]) / sq2 cM = (M[l] - M[s]) / sq2 cVnic = np.max([cVc / (1 - p * cVc), 0]) cmni = cM + cVnic * (p * cM - mp) z = cmni / np.sqrt(cVnic + 1e-25) if np.isnan(z): z = -np.inf e, lP, exit_flag = log_relative_gauss(z) if exit_flag == 0: alpha = e / np.sqrt(cVnic) # beta = alpha * (alpha + cmni / cVnic); # r = beta * cVnic / (1 - cVnic * beta); beta = alpha * (alpha * cVnic + cmni) r = beta / (1 - beta) # new message pnew = r / cVnic mpnew = r * (alpha + cmni / cVnic) + alpha # update terms dp = np.max([-p + eps, gamma * (pnew - p)]) # at worst, remove message dmp = np.max([-mp + eps, gamma * (mpnew - mp)]) d = np.max([dmp, dp]) # for convergence measures pnew = p + dp mpnew = mp + dmp # project out to marginal Vnew = V - dp / (1 + dp * cVc) * np.outer(Vc, Vc) Mnew = M + (dmp - cM * dp) / (1 + dp * cVc) * Vc if np.any(np.isnan(Vnew)): raise Exception("an error occurs while running expectation " "propagation in entropy search. " "Resulting variance contains NaN") # % there is a problem here, when z is very large logS = lP - 0.5 * (np.log(beta) - np.log(pnew) - np.log(cVnic)) \ + (alpha * alpha) / (2 * beta) * cVnic elif exit_flag == -1: d = np.NAN Mnew = 0 Vnew = 0 pnew = 0 mpnew = 0 logS = -np.Infinity elif exit_flag == 1: d = 0 # remove message from marginal: # new message pnew = 0 mpnew = 0 # update terms dp = -p # at worst, remove message dmp = -mp d = max([dmp, dp]) # for convergence measures # project out to marginal Vnew = V - dp / (1 + dp * cVc) * (np.outer(Vc, Vc)) Mnew = M + (dmp - cM * dp) / (1 + dp * cVc) * Vc logS = 0 return Mnew, Vnew, pnew, mpnew, logS, d