Python numpy.polyder() Examples

The following are 26 code examples of numpy.polyder(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: k_analysis.py    From ocelot with GNU General Public License v3.0 6 votes vote down vote up
def data_analysis(e_ph, flux, method="least"):

    if method == "least":
        coeffs = np.polyfit(x=e_ph, y=flux, deg=11)
        polynom = np.poly1d(coeffs)


        x = np.linspace(e_ph[0], e_ph[-1], num=100)
        pd = np.polyder(polynom, m=1)
        indx = np.argmax(np.abs(pd(x)))
        eph_c = x[indx]

        pd2 = np.polyder(polynom, m=2)
        p2_roots = np.roots(pd2)
        p2_roots = p2_roots[p2_roots[:].imag == 0]
        p2_roots = np.real(p2_roots)
        Eph_fin = find_nearest(p2_roots,eph_c)
        return Eph_fin, polynom

    elif method == "new method":
        pass

        #plt.plot(Etotal, total, "ro")
        #plt.plot(x, polynom(x)) 
Example #2
Source File: thermo_bulk.py    From pyiron with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def get_minimum_energy_path(self, pressure=None):
        """

        Args:
            pressure:

        Returns:

        """
        if pressure is not None:
            raise NotImplemented()
        v_min_lst = []
        for c in self._coeff.T:
            v_min = np.roots(np.polyder(c, 1))
            p_der2 = np.polyder(c, 2)
            p_val2 = np.polyval(p_der2, v_min)
            v_m_lst = v_min[p_val2 > 0]
            if len(v_m_lst) > 0:
                v_min_lst.append(v_m_lst[0])
            else:
                v_min_lst.append(np.nan)
        return np.array(v_min_lst) 
Example #3
Source File: test_regression.py    From pySINDy with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #4
Source File: test_regression.py    From keras-lambda with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #5
Source File: test_regression.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #6
Source File: test_regression.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #7
Source File: auto_yaw_trajectory.py    From uav_trajectories with MIT License 5 votes vote down vote up
def func_eq_constraint_der_value(coefficients, i, t, desired_value):
  result = 0
  der = np.polyder(coefficients[i*8:(i+1)*8])

  value = np.polyval(der, t)
  return value - desired_value

# def func_eq_constraint(coefficients, tss, yawss):
#   result = 0
#   last_derivative = None
#   for ts, yaws, i in zip(tss, yawss, range(0, len(tss))):
#     derivative = np.polyder(coefficients[i*8:(i+1)*8])
#     if last_derivative is not None:
#       result += np.polyval(derivative, 0) - last_derivative
#     last_derivative = np.polyval(derivative, tss[-1])


  # # apply coefficients to trajectory
  # for i,p in enumerate(traj.polynomials):
  #   p.pyaw.p = coefficients[i*8:(i+1)*8]
  # # evaluate at each timestep and compute the sum of squared differences
  # result = 0
  # for t,yaw in zip(ts,yaws):
  #   e = traj.eval(t)
  #   result += (e.yaw - yaw) ** 2
  # return result 
Example #8
Source File: auto_yaw_trajectory.py    From uav_trajectories with MIT License 5 votes vote down vote up
def func_eq_constraint_der(coefficients, i, tss, yawss):
  result = 0
  last_der = np.polyder(coefficients[(i-1)*8:i*8])
  this_der = np.polyder(coefficients[i*8:(i+1)*8])

  end_val = np.polyval(last_der, tss[i-1][-1])
  start_val = np.polyval(this_der, tss[i][0])
  return end_val - start_val 
Example #9
Source File: generate_trajectory.py    From uav_trajectories with MIT License 5 votes vote down vote up
def func_eq_constraint_der_value(coefficients, i, t, desired_value, order):
  result = 0
  der = np.polyder(coefficients[i*8:(i+1)*8], order)

  value = np.polyval(der, t)
  return value - desired_value

# def func_eq_constraint(coefficients, tss, yawss):
#   result = 0
#   last_derivative = None
#   for ts, yaws, i in zip(tss, yawss, range(0, len(tss))):
#     derivative = np.polyder(coefficients[i*8:(i+1)*8])
#     if last_derivative is not None:
#       result += np.polyval(derivative, 0) - last_derivative
#     last_derivative = np.polyval(derivative, tss[-1])


  # # apply coefficients to trajectory
  # for i,p in enumerate(traj.polynomials):
  #   p.pyaw.p = coefficients[i*8:(i+1)*8]
  # # evaluate at each timestep and compute the sum of squared differences
  # result = 0
  # for t,yaw in zip(ts,yaws):
  #   e = traj.eval(t)
  #   result += (e.yaw - yaw) ** 2
  # return result 
Example #10
Source File: generate_trajectory.py    From uav_trajectories with MIT License 5 votes vote down vote up
def func_eq_constraint_der(coefficients, i, piece_length, order):
  result = 0
  last_der = np.polyder(coefficients[(i-1)*8:i*8], order)
  this_der = np.polyder(coefficients[i*8:(i+1)*8], order)

  end_val = np.polyval(last_der, piece_length)
  start_val = np.polyval(this_der, 0)
  return end_val - start_val 
Example #11
Source File: test_regression.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #12
Source File: test_regression.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #13
Source File: questionnaire.py    From reportgen with MIT License 5 votes vote down vote up
def clean_ftime(ftime,cut_percent=0.25):
    '''
    ftime 是完成问卷的秒数
    思路
    1、只考虑截断问卷完成时闎蟃小的样本
    2、扟到完成时闎变化的拐点即需芁截断的时闎点
    返回r
    建议截断<r的样本
    '''
    t_min=int(ftime.min())
    t_cut=int(ftime.quantile(cut_percent))
    x=np.array(range(t_min,t_cut))
    y=np.array([len(ftime[ftime<=i]) for i in range(t_min,t_cut)])
    z1 = np.polyfit(x, y, 4) # 拟合埗到的凜数
    z2=np.polyder(z1,2) #求二阶富数
    r=np.roots(np.polyder(z2,1))
    r=int(r[0])
    return r



## ===========================================================
#
#
#                     数据分析和蟓出                          #
#
#
## ========================================================== 
Example #14
Source File: test_regression.py    From ImageFusion with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #15
Source File: test_regression.py    From mxnet-lambda with Apache License 2.0 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #16
Source File: test_regression.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #17
Source File: test_regression.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #18
Source File: num.py    From pwtools with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def polyval(fit, points, der=0):
    """Evaluate polynomial generated by :func:`polyfit` on `points`.

    Parameters
    ----------
    fit, points : see :func:`polyfit`
    der : int, optional
        Derivative order. Only for 1D, uses np.polyder().

    Notes
    -----
    For 1D we provide "analytic" derivatives using np.polyder(). For ND, we
    didn't implement an equivalent machinery. For 2D, you might get away with
    fitting a bispline (see Interpol2D) and use it's derivs. For ND, try rbf.py's RBF
    interpolator which has at least 1st derivatives for arbitrary dimensions.

    See Also
    --------
    :class:`PolyFit`, :class:`PolyFit1D`, :func:`polyfit`
    """
    assert points.ndim == 2, "points must be 2d array"
    pscale, pmin = fit['pscale'], fit['pmin']
    vscale, vmin = fit['vscale'], fit['vmin']
    if der > 0:
        assert points.shape[1] == 1, "deriv only for 1d poly (ndim=1)"
        # ::-1 b/c numpy stores poly coeffs in reversed order
        dcoeffs = np.polyder(fit['coeffs'][::-1], m=der)
        return np.polyval(dcoeffs, (points[:,0] - pmin[0,0]) / pscale[0,0]) / \
            pscale[0,0]**der * vscale
    else:
        vand = vander((points - pmin) / pscale, fit['deg'])
        return np.dot(vand, fit['coeffs']) * vscale + vmin 
Example #19
Source File: test_regression.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #20
Source File: test_regression.py    From Computable with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        """Ticket #1249"""
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #21
Source File: test_regression.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #22
Source File: test_regression.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #23
Source File: test_regression.py    From lambda-packs with MIT License 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #24
Source File: test_regression.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_polyder_return_type(self):
        # Ticket #1249
        assert_(isinstance(np.polyder(np.poly1d([1]), 0), np.poly1d))
        assert_(isinstance(np.polyder([1], 0), np.ndarray))
        assert_(isinstance(np.polyder(np.poly1d([1]), 1), np.poly1d))
        assert_(isinstance(np.polyder([1], 1), np.ndarray)) 
Example #25
Source File: ni.py    From simnibs with GNU General Public License v3.0 4 votes vote down vote up
def localsens(self, coeffs, xi):
        """ Determine the local derivative based sensitivity coefficients in the
        point of operation xi (normalized coordinates!).
        
        example: xi = np.array([[0,0,...,0]]) size: [1 x DIM]
        
        localsens = calc_localsens(self, coeffs, xi)    
        
        input:  coeffs     ... gpc coefficients, np.array() [N_coeffs x N_out]
                xi         ... point in variable space to evaluate local sensitivity in 
                               (norm. coordinates) np.array() [1 x DIM]
        
        output: localsens ... local sensitivity coefficients, np.array() [DIM x N_out]  
        """
        Nmax = len(self.poly)
        
        self.poly_der = [[0 for x in range(self.DIM)] for x in range(Nmax+1)]
        poly_der_xi = [[0 for x in range(self.DIM)] for x in range(Nmax+1)]
        poly_opvals = [[0 for x in range(self.DIM)] for x in range(Nmax+1)]
        
        # preprocess polynomials        
        for i_DIM in range(self.DIM):
            for i_order in range(Nmax+1):
                
                # evaluate the derivatives of the polynomials
                self.poly_der[i_order][i_DIM] = np.polyder(self.poly[i_order][i_DIM])
                
                # evaluate poly and poly_der at point of operation
                poly_opvals[i_order][i_DIM] =  self.poly[i_order][i_DIM](xi[1,i_DIM])
                poly_der_xi[i_order][i_DIM] =  self.poly_der[i_order][i_DIM](xi[1,i_DIM])
        
        N_vals = 1
        poly_sens = np.zeros([self.DIM, self.N_poly])
        
        for i_sens in range(self.DIM):        
            for i_poly in range(self.N_poly):
                A1 = np.ones(N_vals)
                
                # construct polynomial basis according to partial derivatives                
                for i_DIM in range(self.DIM):
                    if i_DIM == i_sens:
                        A1 *= poly_der_xi[self.poly_idx[i_poly][i_DIM]][i_DIM]
                    else:
                        A1 *= poly_opvals[self.poly_idx[i_poly][i_DIM]][i_DIM]
                poly_sens[i_sens,i_poly] = A1
        
        # sum up over all coefficients        
        # [DIM x N_points]  = [DIM x N_poly]  *   [N_poly x N_points]
        localsens = np.dot(poly_sens,coeffs)   
        
        return localsens 
Example #26
Source File: train_model.py    From TheCannon with MIT License 4 votes vote down vote up
def _do_one_regression(lams, fluxes, ivars, lvec):
    """
    Optimizes to find the scatter associated with the best-fit model.

    This scatter is the deviation between the observed spectrum and the model.
    It is wavelength-independent, so we perform this at a single wavelength.

    Input
    -----
    lams: numpy ndarray
        the common wavelength array

    fluxes: numpy ndarray
        pixel intensities

    ivars: numpy ndarray
        inverse variances associated with pixel intensities

    lvec = numpy ndarray 
        the label vector

    Output
    -----
    output of do_one_regression_at_fixed_scatter
    """
    ln_scatter_vals = np.arange(np.log(0.0001), 0., 0.5)
    # minimize over the range of scatter possibilities
    chis_eval = np.zeros_like(ln_scatter_vals)
    for jj, ln_scatter_val in enumerate(ln_scatter_vals):
        coeff, lTCinvl, chi, logdet_Cinv = \
            _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec,
                                               np.exp(ln_scatter_val))
        chis_eval[jj] = np.sum(chi*chi) - logdet_Cinv
    if np.any(np.isnan(chis_eval)):
        best_scatter = np.exp(ln_scatter_vals[-1])
        _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec,
                                                best_scatter)
        return _r + (best_scatter, )
    lowest = np.argmin(chis_eval)
    if (lowest == 0) or (lowest == len(ln_scatter_vals) - 1):
        best_scatter = np.exp(ln_scatter_vals[lowest])
        _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec,
                                                best_scatter)
        return _r + (best_scatter, )
    ln_scatter_vals_short = ln_scatter_vals[np.array(
        [lowest-1, lowest, lowest+1])]
    chis_eval_short = chis_eval[np.array([lowest-1, lowest, lowest+1])]
    z = np.polyfit(ln_scatter_vals_short, chis_eval_short, 2)
    fit_pder = np.polyder(z)
    best_scatter = np.exp(np.roots(fit_pder)[0])
    _r = _do_one_regression_at_fixed_scatter(lams, fluxes, ivars, lvec,
                                            best_scatter)
    return _r + (best_scatter, )