Python numpy.zeroes() Examples
The following are 5
code examples of numpy.zeroes().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: neuralnet.py From mlp-classifier with MIT License | 5 votes |
def batch_update(self, mini_batch, eta, n, regularization=L2): """ Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. """ nabla_b = [np.zeroes(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.back_propogation(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] if regularization == L2: self.weights = [(1-eta*(self.l2/n))*w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] elif regularization == L1: self.weights = [w - eta*self.l1*np.sign(w)/n-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
Example #2
Source File: _split.py From Mastering-Elasticsearch-7.0 with MIT License | 4 votes |
def _make_test_folds(self, X, y=None): rng = check_random_state(self.random_state) y = np.asarray(y) type_of_target_y = type_of_target(y) allowed_target_types = ('binary', 'multiclass') if type_of_target_y not in allowed_target_types: raise ValueError( 'Supported target types are: {}. Got {!r} instead.'.format( allowed_target_types, type_of_target_y)) y = column_or_1d(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of members in any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds
Example #3
Source File: _split.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def _make_test_folds(self, X, y=None): rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of members in any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds
Example #4
Source File: shapelets.py From sktime with BSD 3-Clause "New" or "Revised" License | 4 votes |
def zscore(a, axis=0, ddof=0): """ A static method to return the normalised version of series. This mirrors the scipy implementation with a small difference - rather than allowing /0, the function returns output = np.zeroes(len(input)). This is to allow for sensible processing of candidate shapelets/comparison subseries that are a straight line. Original version: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats .zscore.html Parameters ---------- a : array_like An array like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array a. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like The z-scores, standardized by mean and standard deviation of input array a. """ zscored = np.empty(a.shape) for i, j in enumerate(a): # j = np.asanyarray(j) sstd = j.std(axis=axis, ddof=ddof) # special case - if shapelet is a straight line (i.e. no # variance), zscore ver should be np.zeros(len(a)) if sstd == 0: zscored[i] = np.zeros(len(j)) else: mns = j.mean(axis=axis) if axis and mns.ndim < j.ndim: zscored[i] = ((j - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd, axis=axis)) else: zscored[i] = (j - mns) / sstd return zscored
Example #5
Source File: _split.py From twitter-stock-recommendation with MIT License | 4 votes |
def _make_test_folds(self, X, y=None): rng = self.random_state y = np.asarray(y) type_of_target_y = type_of_target(y) allowed_target_types = ('binary', 'multiclass') if type_of_target_y not in allowed_target_types: raise ValueError( 'Supported target types are: {}. Got {!r} instead.'.format( allowed_target_types, type_of_target_y)) y = column_or_1d(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of members in any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds