Python numpy.logical_xor() Examples
The following are 30
code examples of numpy.logical_xor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_reduce(self): none = np.array([0, 0, 0, 0], bool) some = np.array([1, 0, 1, 1], bool) every = np.array([1, 1, 1, 1], bool) empty = np.array([], bool) arrs = [none, some, every, empty] for arr in arrs: assert_equal(np.logical_and.reduce(arr), all(arr)) for arr in arrs: assert_equal(np.logical_or.reduce(arr), any(arr)) for arr in arrs: assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
Example #2
Source File: extraterrestrial_marauders.py From pycolab with Apache License 2.0 | 6 votes |
def update(self, actions, board, layers, backdrop, things, the_plot): # Where are the laser bolts? Only bolts from the player kill a Marauder. bolts = np.logical_or.reduce([layers[c] for c in UPWARD_BOLT_CHARS], axis=0) hits = bolts & self.curtain # Any hits to Marauders? np.logical_xor(self.curtain, hits, self.curtain) # If so, zap the marauder... the_plot.add_reward(np.sum(hits)*10) # ...and supply a reward. # Save the identities of marauder-striking bolts in the Plot. the_plot['marauder_hitters'] = [chr(c) for c in board[hits]] # If no Marauders are left, or if any are sitting on row 10, end the game. if (not self.curtain.any()) or self.curtain[10, :].any(): return the_plot.terminate_episode() # i.e. return None. # We move faster if there are fewer Marauders. The odd divisor causes speed # jumps to align on the high sides of multiples of 8; so, speed increases as # the number of Marauders decreases to 32 (or 24 etc.), not 31 (or 23 etc.). if the_plot.frame % max(1, np.sum(self.curtain)//8.0000001): return # If any Marauder reaches either side of the screen, reverse horizontal # motion and advance vertically one row. if np.any(self.curtain[:, 0] | self.curtain[:, -1]): self._dx = -self._dx self.curtain[:] = np.roll(self.curtain, shift=1, axis=0) self.curtain[:] = np.roll(self.curtain, shift=self._dx, axis=1)
Example #3
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_reduce(self): none = np.array([0, 0, 0, 0], bool) some = np.array([1, 0, 1, 1], bool) every = np.array([1, 1, 1, 1], bool) empty = np.array([], bool) arrs = [none, some, every, empty] for arr in arrs: assert_equal(np.logical_and.reduce(arr), all(arr)) for arr in arrs: assert_equal(np.logical_or.reduce(arr), any(arr)) for arr in arrs: assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
Example #4
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #5
Source File: p.py From GNSS-DSP-tools with MIT License | 6 votes |
def last_x2(prn,start,len): idx = start + np.arange(len) idx_x2 = idx % 15345037 idx_a = idx % 15345000 hold = idx_a>=(15345000-1069) idx_x2_a = idx_x2.copy() idx_x2_a[hold] = 4091 p_x2a = x2a[idx_x2_a % 4092] idx_b = idx % 15345000 hold = idx_b>=(15345000-965) idx_x2_b = idx_x2.copy() idx_x2_b[hold] = 4092 p_x2b = x2b[idx_x2_b % 4093] return np.logical_xor(p_x2a,p_x2b)
Example #6
Source File: test_ufunc.py From pySINDy with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #7
Source File: test_umath.py From pySINDy with MIT License | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #8
Source File: test_ufunc.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #9
Source File: test_umath.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #10
Source File: test_ufunc.py From vnpy_crypto with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #11
Source File: test_umath.py From vnpy_crypto with MIT License | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #12
Source File: duet.py From nussl with MIT License | 6 votes |
def _compute_masks(self): """Receives the attenuation and delay peaks and computes a mask to be applied to the signal for source separation. """ # compute masks for separation best_so_far = np.inf * np.ones_like(self.stft_ch0, dtype=float) for i in range(0, self.num_sources): mask_array = np.zeros_like(self.stft_ch0, dtype=bool) phase = np.exp(-1j * self.frequency_matrix * self.delay_peak[i]) score = np.abs(self.atn_peak[i] * phase * self.stft_ch0 - self.stft_ch1) ** 2 / (1 + self.atn_peak[i] ** 2) mask = (score < best_so_far) mask_array[mask] = True background_mask = self.mask_type(np.array(mask_array)) self.result_masks.append(background_mask) self.result_masks[0].mask = np.logical_xor(self.result_masks[i].mask, self.result_masks[0].mask) best_so_far[mask] = score[mask] # Compute first mask based on what the other masks left remaining self.result_masks[0].mask = np.logical_not(self.result_masks[0].mask) return self.result_masks
Example #13
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_reduce(self): none = np.array([0, 0, 0, 0], bool) some = np.array([1, 0, 1, 1], bool) every = np.array([1, 1, 1, 1], bool) empty = np.array([], bool) arrs = [none, some, every, empty] for arr in arrs: assert_equal(np.logical_and.reduce(arr), all(arr)) for arr in arrs: assert_equal(np.logical_or.reduce(arr), any(arr)) for arr in arrs: assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
Example #14
Source File: test_umath.py From vnpy_crypto with MIT License | 6 votes |
def test_reduce(self): none = np.array([0, 0, 0, 0], bool) some = np.array([1, 0, 1, 1], bool) every = np.array([1, 1, 1, 1], bool) empty = np.array([], bool) arrs = [none, some, every, empty] for arr in arrs: assert_equal(np.logical_and.reduce(arr), all(arr)) for arr in arrs: assert_equal(np.logical_or.reduce(arr), any(arr)) for arr in arrs: assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
Example #15
Source File: test_umath.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #16
Source File: test_ufunc.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #17
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBCast(self): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] for (xs, ys) in shapes: x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs) y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys) for use_gpu in [True, False]: self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu)
Example #18
Source File: test_ufunc.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #19
Source File: test_umath.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #20
Source File: dataset.py From AugmentedAutoencoder with MIT License | 6 votes |
def augment_occlusion_mask(self, masks, verbose=False, min_trans = 0.2, max_trans=0.7, max_occl = 0.25,min_occl = 0.0): new_masks = np.zeros_like(masks,dtype=np.bool) occl_masks_batch = self.random_syn_masks[np.random.choice(len(self.random_syn_masks),len(masks))] for idx,mask in enumerate(masks): occl_mask = occl_masks_batch[idx] while True: trans_x = int(np.random.choice([-1,1])*(np.random.rand()*(max_trans-min_trans) + min_trans)*occl_mask.shape[0]) trans_y = int(np.random.choice([-1,1])*(np.random.rand()*(max_trans-min_trans) + min_trans)*occl_mask.shape[1]) M = np.float32([[1,0,trans_x],[0,1,trans_y]]) transl_occl_mask = cv2.warpAffine(occl_mask,M,(occl_mask.shape[0],occl_mask.shape[1])) overlap_matrix = np.invert(mask.astype(np.bool)) * transl_occl_mask.astype(np.bool) overlap = len(overlap_matrix[overlap_matrix==True])/float(len(mask[mask==0])) if overlap < max_occl and overlap > min_occl: new_masks[idx,...] = np.logical_xor(mask.astype(np.bool), overlap_matrix) if verbose: print('overlap is ', overlap) break return new_masks
Example #21
Source File: example.py From LSM with GNU General Public License v3.0 | 6 votes |
def generate_stimulus_xor(stim_times, gen_burst, n_inputs=2): inp_states = np.random.randint(2, size=(n_inputs, np.size(stim_times))) inp_spikes = [] for times in ma.masked_values(inp_states, 0) * stim_times: # for each input (neuron): generate spikes according to state (=1) and stimulus time-grid spikes = np.concatenate([t + gen_burst() for t in times.compressed()]) # round to simulation precision spikes *= 10 spikes = spikes.round() + 1.0 spikes = spikes / 10.0 inp_spikes.append(spikes) # astype(int) could be omitted, because False/True has the same semantics targets = np.logical_xor(*inp_states).astype(int) return inp_spikes, targets
Example #22
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_reduce(self): none = np.array([0, 0, 0, 0], bool) some = np.array([1, 0, 1, 1], bool) every = np.array([1, 1, 1, 1], bool) empty = np.array([], bool) arrs = [none, some, every, empty] for arr in arrs: assert_equal(np.logical_and.reduce(arr), all(arr)) for arr in arrs: assert_equal(np.logical_or.reduce(arr), any(arr)) for arr in arrs: assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
Example #23
Source File: test_umath.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_truth_table_logical(self): # 2, 3 and 4 serves as true values input1 = [0, 0, 3, 2] input2 = [0, 4, 0, 2] typecodes = (np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + '?') # boolean for dtype in map(np.dtype, typecodes): arg1 = np.asarray(input1, dtype=dtype) arg2 = np.asarray(input2, dtype=dtype) # OR out = [False, True, True, True] for func in (np.logical_or, np.maximum): assert_equal(func(arg1, arg2).astype(bool), out) # AND out = [False, False, False, True] for func in (np.logical_and, np.minimum): assert_equal(func(arg1, arg2).astype(bool), out) # XOR out = [False, True, True, False] for func in (np.logical_xor, np.not_equal): assert_equal(func(arg1, arg2).astype(bool), out)
Example #24
Source File: test_ufunc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #25
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testOverloadComparisons(self): dtypes = [ tf.float16, tf.float32, tf.float64, tf.int32, tf.int64, ] funcs = [ (np.less, _LT), (np.less_equal, _LE), (np.greater, _GT), (np.greater_equal, _GE), ] for dtype in dtypes: for np_func, tf_func in funcs: self._compareBinary(10, 5, dtype, np_func, tf_func) logical_funcs = [ (np.logical_and, _AND), (np.logical_or, _OR), (np.logical_xor, _XOR), (np.equal, tf.equal), (np.not_equal, tf.not_equal) ] for np_func, tf_func in logical_funcs: self._compareBinary(True, False, tf.bool, np_func, tf_func) self._compareBinary(True, True, tf.bool, np_func, tf_func) self._compareBinary(False, False, tf.bool, np_func, tf_func) self._compareBinary(False, True, tf.bool, np_func, tf_func) self._compareBinary([True, True, False, False], [True, False, True, False], tf.bool, np_func, tf_func) self._compareUnary(True, tf.bool, np.logical_not, _INV) self._compareUnary(False, tf.bool, np.logical_not, _INV) self._compareUnary([True, False], tf.bool, np.logical_not, _INV)
Example #26
Source File: p.py From GNSS-DSP-tools with MIT License | 5 votes |
def p_code(prn,start,len): day = (prn-1)//37 prn = prn - 37*day start += chip_rate*86400*day start = start%code_length p_x1 = x1(prn,start,len) p_x2 = x2(prn,start-prn,len) p_last_x2 = last_x2(prn,(start-prn)%code_length,len) idx_x2 = (start - prn + np.arange(len)) % code_length idx_last_x2 = idx_x2>=(code_length-4092) p_x2[idx_last_x2] = p_last_x2[idx_last_x2] return np.logical_xor(p_x1,p_x2)
Example #27
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testShapeMismatch(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1) for f in [tf.logical_and, tf.logical_or, tf.logical_xor]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x, y)
Example #28
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testTensor(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) for use_gpu in [True, False]: self._not(x, use_gpu) self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu)
Example #29
Source File: e5ai.py From GNSS-DSP-tools with MIT License | 5 votes |
def make_e5ai(prn): start = seq(e5ai_init[prn]) r2 = make_e5ai_reg2(start) return np.logical_xor(r1,r2)
Example #30
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_logical_and_or_xor(self): assert_array_equal(self.t | self.t, self.t) assert_array_equal(self.f | self.f, self.f) assert_array_equal(self.t | self.f, self.t) assert_array_equal(self.f | self.t, self.t) np.logical_or(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t & self.t, self.t) assert_array_equal(self.f & self.f, self.f) assert_array_equal(self.t & self.f, self.f) assert_array_equal(self.f & self.t, self.f) np.logical_and(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t ^ self.t, self.f) assert_array_equal(self.f ^ self.f, self.f) assert_array_equal(self.t ^ self.f, self.t) assert_array_equal(self.f ^ self.t, self.t) np.logical_xor(self.t, self.t, out=self.o) assert_array_equal(self.o, self.f) assert_array_equal(self.nm & self.t, self.nm) assert_array_equal(self.im & self.f, False) assert_array_equal(self.nm & True, self.nm) assert_array_equal(self.im & False, self.f) assert_array_equal(self.nm | self.t, self.t) assert_array_equal(self.im | self.f, self.im) assert_array_equal(self.nm | True, self.t) assert_array_equal(self.im | False, self.im) assert_array_equal(self.nm ^ self.t, self.im) assert_array_equal(self.im ^ self.f, self.im) assert_array_equal(self.nm ^ True, self.im) assert_array_equal(self.im ^ False, self.im)