Python numpy.vander() Examples
The following are 30
code examples of numpy.vander().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: odepack.py From Assimulo with GNU Lesser General Public License v3.0 | 6 votes |
def Nordsieck_RKn(self,t0,y,sw0): s=self.number_of_steps H=(s-1)*self.H co_nord=[N.array([1./2,1.]),N.array([2./5,3./5,1.])] l=size(y,0) y0=y[0,:] yf=self.f(t0,y0,sw0) if l==3: co=N.array([co_nord[0]]) nord_n=N.vander(co_nord[0],self.number_of_steps+1) b=y[1:]-y0-co.T*yf nord=Sc.solve(nord_n[0:2,0:2],b) elif l==4: co=N.array([co_nord[1]]) nord_n=N.vander(co_nord[1],self.number_of_steps+1) b=y[1:]-y0-H*co.T*yf nord=Sc.solve(nord_n[0:3,0:3],b) nord=N.vstack((y0,H*yf,nord[::-1])) return nord
Example #2
Source File: excellib.py From koala with GNU General Public License v3.0 | 6 votes |
def linest(*args, **kwargs): # Excel reference: https://support.office.com/en-us/article/LINEST-function-84d7d0d9-6e50-4101-977a-fa7abf772b6d Y = list(args[0].values()) X = list(args[1].values()) if len(args) == 3: const = args[2] if isinstance(const,str): const = (const.lower() == "true") else: const = True degree = kwargs.get('degree',1) # build the vandermonde matrix A = np.vander(X, degree+1) if not const: # force the intercept to zero A[:,-1] = np.zeros((1,len(X))) # perform the fit (coefs, residuals, rank, sing_vals) = np.linalg.lstsq(A, Y) return coefs
Example #3
Source File: test_interpolate.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan): """Evaluate piecewise polynomial manually (another way)""" a = breaks[0] b = breaks[-1] K = coeffs.shape[0] saveshape = np.shape(xnew) xnew = np.ravel(xnew) res = np.empty_like(xnew) mask = (xnew >= a) & (xnew <= b) res[~mask] = fill xx = xnew.compress(mask) indxs = np.searchsorted(breaks, xx)-1 indxs = indxs.clip(0, len(breaks)) pp = coeffs diff = xx - breaks.take(indxs) V = np.vander(diff, N=K) values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))]) res[mask] = values res.shape = saveshape return res
Example #4
Source File: interpolate.py From Computable with MIT License | 6 votes |
def __call__(self, xnew): saveshape = np.shape(xnew) xnew = np.ravel(xnew) res = np.empty_like(xnew) mask = (xnew >= self.a) & (xnew <= self.b) res[~mask] = self.fill xx = xnew.compress(mask) indxs = np.searchsorted(self.breaks, xx)-1 indxs = indxs.clip(0, len(self.breaks)) pp = self.coeffs diff = xx - self.breaks.take(indxs) V = np.vander(diff, N=self.K) # values = np.diag(dot(V,pp[:,indxs])) values = array([dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))]) res[mask] = values res.shape = saveshape return res
Example #5
Source File: outliers_influence.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def reset_ramsey(res, degree=5): '''Ramsey's RESET specification test for linear models This is a general specification test, for additional non-linear effects in a model. Notes ----- The test fits an auxiliary OLS regression where the design matrix, exog, is augmented by powers 2 to degree of the fitted values. Then it performs an F-test whether these additional terms are significant. If the p-value of the f-test is below a threshold, e.g. 0.1, then this indicates that there might be additional non-linear effects in the model and that the linear model is mis-specified. References ---------- http://en.wikipedia.org/wiki/Ramsey_RESET_test ''' order = degree + 1 k_vars = res.model.exog.shape[1] #vander without constant and x: y_fitted_vander = np.vander(res.fittedvalues, order)[:, :-2] #drop constant exog = np.column_stack((res.model.exog, y_fitted_vander)) res_aux = OLS(res.model.endog, exog).fit() #r_matrix = np.eye(degree, exog.shape[1], k_vars) r_matrix = np.eye(degree-1, exog.shape[1], k_vars) #df1 = degree - 1 #df2 = exog.shape[0] - degree - res.df_model (without constant) return res_aux.f_test(r_matrix) #, r_matrix, res_aux
Example #6
Source File: extras.py From recruit with Apache License 2.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #7
Source File: _albrecht.py From quadpy with GNU General Public License v3.0 | 5 votes |
def albrecht_7(): alpha = 2 * numpy.arange(8) * pi / 8 s = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(8) + 1) * pi / 8 t = numpy.array([cos(alpha), sin(alpha)]).T sqrt21 = sqrt(21) wt1, wt2 = (4998 + pm_ * 343 * sqrt21) / 253125 tau1, tau2 = sqrt((21 - pm_ * sqrt21) / 28) # The values are solutions of # 4960228*x^4 - 10267740*x^3 + 6746490*x^2 - 1476540*x + 70425 = 0 sigma2 = roots([4960228, -10267740, 6746490, -1476540, 70425]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array( [frac(57719, 675000), frac(9427, 270000), frac(193, 9000), frac(113, 7200)] ) ws = linear_solve(A, b) data = [ (ws[0], sqrt(sigma2[0]) * s), (ws[1], sqrt(sigma2[1]) * s), (ws[2], sqrt(sigma2[2]) * s), (ws[3], sqrt(sigma2[3]) * s), (wt1, tau1 * t), (wt2, tau2 * t), ] points, weights = untangle(data) return S2Scheme("Albrecht 7", weights, points, 15, _source)
Example #8
Source File: _albrecht.py From quadpy with GNU General Public License v3.0 | 5 votes |
def albrecht_8(): alpha = 2 * numpy.arange(10) * pi / 10 s = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(10) + 1) * pi / 10 t = numpy.array([cos(alpha), sin(alpha)]).T m0 = frac(496439663, 13349499975) sqrt7 = sqrt(7) wt1, wt2 = (125504 + pm_ * 16054 * sqrt7) / 8751645 tau1, tau2 = sqrt((14 - pm_ * sqrt7) / 18) # The values are solutions of # 160901628*x^4 - 364759920*x^3 + 274856190*x^2 - 76570340*x # + 6054195 = 0 sigma2 = roots([160901628, -364759920, 274856190, -76570340, 6054195]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array( [ frac(121827491812, 1802182496625), frac(48541, 1666980), frac(977, 55566), frac(671, 52920), ] ) ws = linear_solve(A, b) data = [ (m0, z(2)), (ws[0], sqrt(sigma2[0]) * s), (ws[1], sqrt(sigma2[1]) * s), (ws[2], sqrt(sigma2[2]) * s), (ws[3], sqrt(sigma2[3]) * s), (wt1, tau1 * t), (wt2, tau2 * t), ] points, weights = untangle(data) return S2Scheme("Albrecht 8", weights, points, 17, _source)
Example #9
Source File: extras.py From ImageFusion with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #10
Source File: learning_vandermonde.py From learning-circuits with Apache License 2.0 | 5 votes |
def _setup(self, config): torch.manual_seed(config['seed']) self.model = ButterflyProduct(size=config['size'], complex=False, fixed_order=config['fixed_order'], softmax_fn=config['softmax_fn']) if (not config['fixed_order']) and config['softmax_fn'] == 'softmax': self.semantic_loss_weight = config['semantic_loss_weight'] self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr']) self.n_steps_per_epoch = config['n_steps_per_epoch'] size = config['size'] # Need to transpose as dct acts on rows of matrix np.eye, not columns n = size np.random.seed(0) x = np.random.randn(n) V = np.vander(x, increasing=True) self.target_matrix = torch.tensor(V, dtype=torch.float) arange_ = np.arange(size) dct_perm = np.concatenate((arange_[::2], arange_[::-2])) br_perm = bitreversal_permutation(size) assert config['perm'] in ['id', 'br', 'dct'] if config['perm'] == 'id': self.perm = torch.arange(size) elif config['perm'] == 'br': self.perm = br_perm elif config['perm'] == 'dct': self.perm = torch.arange(size)[dct_perm][br_perm] else: assert False, 'Wrong perm in config'
Example #11
Source File: learning_vandermonde.py From learning-circuits with Apache License 2.0 | 5 votes |
def _setup(self, config): torch.manual_seed(config['seed']) self.model = ButterflyProduct(size=config['size'], complex=True, fixed_order=config['fixed_order'], softmax_fn=config['softmax_fn']) if (not config['fixed_order']) and config['softmax_fn'] == 'softmax': self.semantic_loss_weight = config['semantic_loss_weight'] self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr']) self.n_steps_per_epoch = config['n_steps_per_epoch'] size = config['size'] n = size np.random.seed(0) x = np.random.randn(n) V = np.vander(x, increasing=True) self.target_matrix = torch.tensor(V, dtype=torch.float) arange_ = np.arange(size) dct_perm = np.concatenate((arange_[::2], arange_[::-2])) br_perm = bitreversal_permutation(size) assert config['perm'] in ['id', 'br', 'dct'] if config['perm'] == 'id': self.perm = torch.arange(size) elif config['perm'] == 'br': self.perm = br_perm elif config['perm'] == 'dct': self.perm = torch.arange(size)[dct_perm][br_perm] else: assert False, 'Wrong perm in config'
Example #12
Source File: utils.py From time-domain-neural-audio-style-transfer with Apache License 2.0 | 5 votes |
def matrix_dft(V): N = len(V) w = np.exp(-2j * np.pi / N) col = np.vander([w], N, True) W = np.vander(col.flatten(), N, True) / np.sqrt(N) return np.dot(W, V)
Example #13
Source File: extras.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #14
Source File: tsatools.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def detrend(x, order=1, axis=0): """ Detrend an array with a trend of given order along axis 0 or 1 Parameters ---------- x : array_like, 1d or 2d data, if 2d, then each row or column is independently detrended with the same trendorder, but independent trend estimates order : int specifies the polynomial order of the trend, zero is constant, one is linear trend, two is quadratic trend axis : int axis can be either 0, observations by rows, or 1, observations by columns Returns ------- detrended data series : ndarray The detrended series is the residual of the linear regression of the data on the trend of given order. """ if x.ndim == 2 and int(axis) == 1: x = x.T elif x.ndim > 2: raise NotImplementedError('x.ndim > 2 is not implemented until it is needed') nobs = x.shape[0] if order == 0: # Special case demean resid = x - x.mean(axis=0) else: trends = np.vander(np.arange(float(nobs)), N=order + 1) beta = np.linalg.pinv(trends).dot(x) resid = x - np.dot(trends, beta) if x.ndim == 2 and int(axis) == 1: resid = resid.T return resid
Example #15
Source File: _albrecht.py From quadpy with GNU General Public License v3.0 | 5 votes |
def albrecht_6(): # The values are solutions of # 11025*x^3 - 19020*x^2 + 9370*x - 1212 = 0 sigma2 = roots([11025, -19020, 9370, -1212]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array([frac(1432433, 18849024), frac(1075, 31104), frac(521, 25920)]) B = linear_solve(A, b) B0 = frac(2615, 43632) C = frac(16807, 933120) alpha = 2 * numpy.arange(10) * pi / 10 rs = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(10) + 1) * pi / 10 uv = numpy.array([cos(alpha), sin(alpha)]).T data = [ (B0, z(2)), (B[0], sqrt(sigma2[0]) * rs), (B[1], sqrt(sigma2[1]) * rs), (B[2], sqrt(sigma2[2]) * rs), (C, sqrt(frac(6, 7)) * uv), ] points, weights = untangle(data) return S2Scheme("Albrecht 6", weights, points, 13, _source)
Example #16
Source File: test_trend.py From sktime with BSD 3-Clause "New" or "Revised" License | 5 votes |
def compute_expected_coefs(y, degree, with_intercept=True): """Helper function to compute expected coefficients from polynomial regression""" poly_matrix = np.vander(y.index.values, degree + 1) if not with_intercept: poly_matrix = poly_matrix[:, :-1] return np.linalg.lstsq(poly_matrix, y.values, rcond=None)[0]
Example #17
Source File: forecasting.py From sktime with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_polynomial_series(n, order, coefs=None): """Helper function to generate polynomial series of given order and coefficients""" if coefs is None: coefs = np.ones((order + 1, 1)) x = np.vander(np.arange(n), N=order + 1).dot(coefs) return x.ravel()
Example #18
Source File: time_series.py From sktime with BSD 3-Clause "New" or "Revised" License | 5 votes |
def fit_trend(x, order=0): """Fit linear regression with polynomial terms of given order x : array_like, shape=[n_samples, n_obs] Time series data, each sample is fitted separately order : int The polynomial order of the trend, zero is constant (mean), one is linear trend, two is quadratic trend, and so on. Returns ------- coefs : ndarray, shape=[n_samples, order + 1] Fitted coefficients of polynomial order for each sample, one column means order zero, two columns mean order 1 (linear), three columns mean order 2 (quadratic), etc See Also ------- add_trend remove_trend """ x = check_array(x) if order == 0: coefs = np.mean(x, axis=1).reshape(-1, 1) else: n_obs = x.shape[1] index = np.arange(n_obs) poly_terms = np.vander(index, N=order + 1) # linear least squares fitting using numpy's optimised routine, # assuming samples in columns # coefs = np.linalg.pinv(poly_terms).dot(x.T).T coefs, _, _, _ = np.linalg.lstsq(poly_terms, x.T, rcond=None) # returning fitted coefficients in expected format with samples in rows coefs = coefs.T return coefs
Example #19
Source File: extras.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #20
Source File: extras.py From coffeegrindsize with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #21
Source File: extras.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #22
Source File: extras.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #23
Source File: extras.py From twitter-stock-recommendation with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #24
Source File: test_graph.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_graph_laplacian(): for mat in (np.arange(10) * np.arange(10)[:, np.newaxis], np.ones((7, 7)), np.eye(19), np.vander(np.arange(4)) + np.vander(np.arange(4)).T,): sp_mat = sparse.csr_matrix(mat) for normed in (True, False): laplacian = graph_laplacian(mat, normed=normed) n_nodes = mat.shape[0] if not normed: np.testing.assert_array_almost_equal(laplacian.sum(axis=0), np.zeros(n_nodes)) np.testing.assert_array_almost_equal(laplacian.T, laplacian) np.testing.assert_array_almost_equal( laplacian, graph_laplacian(sp_mat, normed=normed).toarray())
Example #25
Source File: extras.py From keras-lambda with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #26
Source File: test_graph_laplacian.py From Computable with MIT License | 5 votes |
def test_graph_laplacian(): mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]', 'np.ones((7, 7))', 'np.eye(19)', 'sparse.diags([1, 1], [-1, 1], shape=(4,4))', 'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()', 'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())', 'np.vander(np.arange(4)) + np.vander(np.arange(4)).T', ) for mat_str in mats: for normed in (True, False): yield _check_graph_laplacian, mat_str, normed
Example #27
Source File: extras.py From lambda-packs with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #28
Source File: extras.py From lambda-packs with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #29
Source File: extras.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example #30
Source File: extras.py From vnpy_crypto with MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander