Python numpy.atleast_1d() Examples
The following are 30
code examples of numpy.atleast_1d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: em.py From typhon with MIT License | 6 votes |
def blackbody_radiance(self, T, spectral=True): """Calculate integrated radiance for blackbody at temperature T :param T: Temperature [K]. This can be either a python number, or a numpy ndarray, on a ureg quantity encompassing either. :param spectral: Parameter to control whether to return spectral radiance or radiance. See self.integrate_radiances for details. Returns quantity ndarray with blackbody radiance in desired unit. Note that this is an ndarray with dimension (1,) even if you passin a scalar. """ try: T = T.to("K") except AttributeError: T = ureg.Quantity(T, "K") T = ureg.Quantity(numpy.atleast_1d(T), T.u) # fails if T is multidimensional shp = T.shape return self.integrate_radiances( self.frequency, planck_f( self.frequency[numpy.newaxis, :], T.reshape((-1,))[:, numpy.newaxis]), spectral=spectral).reshape(shp)
Example #2
Source File: stats.py From lambda-packs with MIT License | 6 votes |
def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) if b.ndim == 0: b = np.atleast_1d(b) return a, b, outaxis
Example #3
Source File: filter_design.py From lambda-packs with MIT License | 6 votes |
def lp2lp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) M = max((d, n)) pwo = pow(wo, numpy.arange(M - 1, -1, -1)) start1 = max((n - d, 0)) start2 = max((d - n, 0)) b = b * pwo[start1] / pwo[start2:] a = a * pwo[start1] / pwo[start1:] return normalize(b, a)
Example #4
Source File: utils.py From baseband with GNU General Public License v3.0 | 6 votes |
def byte_array(pattern): """Convert the pattern to a byte array. Parameters ---------- pattern : ~numpy.ndarray, bytes, int, or iterable of int Pattern to convert. If a `~numpy.ndarray` or `bytes` instance, a byte array view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be interpreted as little-endian. Returns ------- byte_array : `~numpy.ndarray` of byte With any elements of pattern stored in little-endian order. """ if isinstance(pattern, (np.ndarray, bytes)): # Quick turn-around for input that is OK already: return np.atleast_1d(pattern).view('u1') pattern = np.array(pattern, ndmin=1) if (pattern.dtype.kind not in 'uif' or pattern.min() < 0 or pattern.max() >= 1 << 32): raise ValueError('values have to fit in 32 bit unsigned int.') return pattern.astype('<u4').view('u1')
Example #5
Source File: minpack.py From lambda-packs with MIT License | 6 votes |
def _check_func(checker, argname, thefunc, x0, args, numinputs, output_shape=None): res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) if (output_shape is not None) and (shape(res) != output_shape): if (output_shape[0] != 1): if len(output_shape) > 1: if output_shape[1] == 1: return shape(res) msg = "%s: there is a mismatch between the input and output " \ "shape of the '%s' argument" % (checker, argname) func_name = getattr(thefunc, '__name__', None) if func_name: msg += " '%s'." % func_name else: msg += "." msg += 'Shape should be %s but it is %s.' % (output_shape, shape(res)) raise TypeError(msg) if issubdtype(res.dtype, inexact): dt = res.dtype else: dt = dtype(float) return shape(res), dt
Example #6
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def do(self, a, b, tags): d = linalg.det(a) (s, ld) = linalg.slogdet(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev, axis=-1)) assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) s = np.atleast_1d(s) ld = np.atleast_1d(ld) m = (s != 0) assert_almost_equal(np.abs(s[m]), 1) assert_equal(ld[~m], -inf)
Example #7
Source File: _continuous_distns.py From lambda-packs with MIT License | 6 votes |
def _munp(self, n, beta, m): """ Returns the n-th non-central moment of the crystalball function. """ N = 1.0 / (m/beta / (m-1) * np.exp(-beta**2 / 2.0) + _norm_pdf_C * _norm_cdf(beta)) def n_th_moment(n, beta, m): """ Returns n-th moment. Defined only if n+1 < m Function cannot broadcast due to the loop over n """ A = (m/beta)**m * np.exp(-beta**2 / 2.0) B = m/beta - beta rhs = 2**((n-1)/2.0) * sc.gamma((n+1)/2) * (1.0 + (-1)**n * sc.gammainc((n+1)/2, beta**2 / 2)) lhs = np.zeros(rhs.shape) for k in range(n + 1): lhs += sc.binom(n, k) * B**(n-k) * (-1)**k / (m - k - 1) * (m/beta)**(-m + k + 1) return A * lhs + rhs return N * _lazywhere(np.atleast_1d(n + 1 < m), (n, beta, m), np.vectorize(n_th_moment, otypes=[np.float]), np.inf)
Example #8
Source File: parameters.py From buzzard with Apache License 2.0 | 6 votes |
def normalize_channels_parameter(channels, channel_count): if channels is None: if channel_count == 1: return [0], True else: return list(range(channel_count)), False indices = np.arange(channel_count) indices = indices[channels] indices = np.atleast_1d(indices) if isinstance(channels, slice): return indices.tolist(), False channels = np.asarray(channels) if not np.issubdtype(channels.dtype, np.number): raise TypeError('`channels` should be None or int or slice or list of int') if channels.ndim == 0: assert len(indices) == 1 return indices.tolist(), True return indices.tolist(), False
Example #9
Source File: partition.py From mars with Apache License 2.0 | 6 votes |
def _validate_partition_arguments(a, kth, axis, kind, order, kw): a = astensor(a) if axis is None: a = a.flatten() axis = 0 else: axis = validate_axis(a.ndim, axis) if isinstance(kth, (Base, Entity)): kth = astensor(kth) _check_kth_dtype(kth.dtype) else: kth = np.atleast_1d(kth) kth = _validate_kth_value(kth, a.shape[axis]) if kth.ndim > 1: raise ValueError('object too deep for desired array') if kind != 'introselect': raise ValueError('{} is an unrecognized kind of select'.format(kind)) # if a is structure type and order is not None order = validate_order(a.dtype, order) need_align = kw.pop('need_align', None) if len(kw) > 0: raise TypeError('partition() got an unexpected keyword ' 'argument \'{}\''.format(next(iter(kw)))) return a, kth, axis, kind, order, need_align
Example #10
Source File: filter_design.py From lambda-packs with MIT License | 5 votes |
def lp2bs(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandstop filter. Return an analog band-stop filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) M = max([N, D]) Np = M + M Dp = M + M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * b[N - i] * (wosq) ** (M - i - k) * bw ** i) bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * a[D - i] * (wosq) ** (M - i - k) * bw ** i) aprime[Dp - j] = val return normalize(bprime, aprime)
Example #11
Source File: observable_array.py From paramz with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __new__(cls, input_array, *a, **kw): # allways make a copy of input paramters, as we need it to be in C order: if not isinstance(input_array, ObsAr): try: # try to cast ints to floats obj = np.atleast_1d(np.require(input_array, dtype=np.float_, requirements=['W', 'C'])).view(cls) except ValueError: # do we have other dtypes in the array? obj = np.atleast_1d(np.require(input_array, requirements=['W', 'C'])).view(cls) else: obj = input_array super(ObsAr, obj).__init__(*a, **kw) return obj
Example #12
Source File: filter_design.py From lambda-packs with MIT License | 5 votes |
def lp2bp(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandpass filter. Return an analog band-pass filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) ma = max([N, D]) Np = N + ma Dp = D + ma bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i aprime[Dp - j] = val return normalize(bprime, aprime)
Example #13
Source File: filter_design.py From lambda-packs with MIT License | 5 votes |
def lp2hp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a highpass filter. Return an analog high-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) if wo != 1: pwo = pow(wo, numpy.arange(max((d, n)))) else: pwo = numpy.ones(max((d, n)), b.dtype.char) if d >= n: outa = a[::-1] * pwo outb = resize(b, (d,)) outb[n:] = 0.0 outb[:n] = b[::-1] * pwo[:n] else: outb = b[::-1] * pwo outa = resize(a, (n,)) outa[d:] = 0.0 outa[:d] = a[::-1] * pwo[:d] return normalize(outb, outa)
Example #14
Source File: ltisys.py From lambda-packs with MIT License | 5 votes |
def num(self, num): self._num = atleast_1d(num) # Update dimensions if len(self.num.shape) > 1: self.outputs, self.inputs = self.num.shape else: self.outputs = 1 self.inputs = 1
Example #15
Source File: ltisys.py From lambda-packs with MIT License | 5 votes |
def den(self, den): self._den = atleast_1d(den)
Example #16
Source File: ltisys.py From lambda-packs with MIT License | 5 votes |
def poles(self, poles): self._poles = atleast_1d(poles)
Example #17
Source File: np_utils.py From CAPTCHA-breaking with MIT License | 5 votes |
def normalize(a, axis=-1, order=2): l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) l2[l2 == 0] = 1 return a / np.expand_dims(l2, axis)
Example #18
Source File: transform.py From bop_toolkit with MIT License | 5 votes |
def vector_norm(data, axis=None, out=None): """Return length, i.e. Euclidean norm, of ndarray along axis. >>> v = numpy.random.random(3) >>> n = vector_norm(v) >>> numpy.allclose(n, numpy.linalg.norm(v)) True >>> v = numpy.random.rand(6, 5, 3) >>> n = vector_norm(v, axis=-1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) True >>> n = vector_norm(v, axis=1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> v = numpy.random.rand(5, 4, 3) >>> n = numpy.empty((5, 3)) >>> vector_norm(v, axis=1, out=n) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> vector_norm([]) 0.0 >>> vector_norm([1]) 1.0 """ data = numpy.array(data, dtype=numpy.float64, copy=True) if out is None: if data.ndim == 1: return math.sqrt(numpy.dot(data, data)) data *= data out = numpy.atleast_1d(numpy.sum(data, axis=axis)) numpy.sqrt(out, out) return out else: data *= data numpy.sum(data, axis=axis, out=out) numpy.sqrt(out, out)
Example #19
Source File: distance.py From lambda-packs with MIT License | 5 votes |
def _validate_vector(u, dtype=None): # XXX Is order='c' really necessary? u = np.asarray(u, dtype=dtype, order='c').squeeze() # Ensure values such as u=1 and u=[1] still return 1-D arrays. u = np.atleast_1d(u) if u.ndim > 1: raise ValueError("Input vector should be 1-D.") return u
Example #20
Source File: states.py From westpa with MIT License | 5 votes |
def __init__(self, label, pcoord, state_id=None): self.label = label self.pcoord = numpy.atleast_1d(pcoord) self.state_id = state_id
Example #21
Source File: signaltools.py From lambda-packs with MIT License | 5 votes |
def medfilt(volume, kernel_size=None): """ Perform a median filter on an N-dimensional array. Apply a median filter to the input array using a local window-size given by `kernel_size`. Parameters ---------- volume : array_like An N-dimensional input array. kernel_size : array_like, optional A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension. Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ volume = atleast_1d(volume) if kernel_size is None: kernel_size = [3] * volume.ndim kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), volume.ndim) for k in range(volume.ndim): if (kernel_size[k] % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") domain = ones(kernel_size) numels = product(kernel_size, axis=0) order = numels // 2 return sigtools._order_filterND(volume, domain, order)
Example #22
Source File: states.py From westpa with MIT License | 5 votes |
def __init__(self, label, probability, pcoord=None, auxref=None, state_id=None): self.label = label self.probability = probability self.pcoord = numpy.atleast_1d(pcoord) self.auxref = auxref self.state_id = state_id
Example #23
Source File: states.py From westpa with MIT License | 5 votes |
def __init__(self, state_id, basis_state_id, iter_created, iter_used=None, istate_type=None, istate_status=None, pcoord=None, basis_state=None): self.state_id = state_id self.basis_state_id = basis_state_id self.basis_state=basis_state self.istate_type = istate_type self.istate_status = istate_status self.iter_created = iter_created self.iter_used = iter_used self.pcoord = numpy.atleast_1d(pcoord)
Example #24
Source File: index_lib.py From mars with Apache License 2.0 | 5 votes |
def preprocess(self, index_info: IndexInfo, context: IndexHandlerContext) -> None: tileable = context.tileable check_chunks_unknown_shape([tileable], TilesError) input_axis = index_info.input_axis if tileable.ndim == 2: index_value = [tileable.index_value, tileable.columns_value][input_axis] else: index_value = tileable.index_value cum_nsplit = [0] + np.cumsum(tileable.nsplits[input_axis]).tolist() if index_value.has_value(): # turn label-based fancy index into position-based pd_index = index_value.to_pandas() positions = convert_labels_into_positions(pd_index, index_info.raw_index) split_info = split_indexes_into_chunks([tileable.nsplits[input_axis]], [positions]) chunk_index_to_pos = split_info[0] is_asc_sorted = split_info[-1] # convert back to labels for chunk_index chunk_index_to_labels = dict() for chunk_index, pos in chunk_index_to_pos.items(): # chunk_index and pos are all list with 1 element abs_pos = pos[0] + cum_nsplit[chunk_index[0]] chunk_labels = to_numpy(pd_index[abs_pos]) chunk_index_to_labels[chunk_index[0]] = chunk_labels index_info.is_label_asc_sorted = is_asc_sorted index_info.chunk_index_to_labels = chunk_index_to_labels else: index = index_info.raw_index if np.isscalar(index): # delegation from label index handler index = np.atleast_1d(index) # does not know the right positions, need postprocess always index_info.is_label_asc_sorted = False # do df.loc on each chunk index_info.chunk_index_to_labels = \ {i: index for i in range(tileable.chunk_shape[input_axis])}
Example #25
Source File: _utils.py From dexplo with BSD 3-Clause "New" or "Revised" License | 5 votes |
def try_to_squeeze_array(arr: ndarray) -> ndarray: if arr.ndim == 1: return arr if arr.ndim == 2 and (arr.shape[0] == 1 or arr.shape[1] == 1): return np.atleast_1d(arr.squeeze()) else: raise ValueError('Array must be one dimensional or two dimensional ' 'with 1 column')
Example #26
Source File: calcs.py From mlearn with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _parse(self): element = np.atleast_1d(_read_dump('dump.element', 'unicode')) b = np.atleast_2d(_read_dump('dump.sna')) db = np.atleast_2d(_read_dump('dump.snad')) vb = np.atleast_2d(_read_dump('dump.snav')) return b, db, vb, element
Example #27
Source File: tools.py From burnman with GNU General Public License v2.0 | 5 votes |
def unit_normalize(a, order=2, axis=-1): """ Calculates the L2 normalized array of numpy array a of a given order and along a given axis. """ l2 = np.atleast_1d(np.apply_along_axis(np.linalg.norm, axis, a, order)) l2[l2==0] = 1 return a / np.expand_dims(l2, axis)[0][0]
Example #28
Source File: interpolate_wrapper.py From lambda-packs with MIT License | 5 votes |
def atleast_1d_and_contiguous(ary, dtype=np.float64): return np.atleast_1d(np.ascontiguousarray(ary, dtype))
Example #29
Source File: transformations.py From cozmo_driver with Apache License 2.0 | 5 votes |
def vector_norm(data, axis=None, out=None): """Return length, i.e. eucledian norm, of ndarray along axis. >>> v = numpy.random.random(3) >>> n = vector_norm(v) >>> numpy.allclose(n, numpy.linalg.norm(v)) True >>> v = numpy.random.rand(6, 5, 3) >>> n = vector_norm(v, axis=-1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) True >>> n = vector_norm(v, axis=1) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> v = numpy.random.rand(5, 4, 3) >>> n = numpy.empty((5, 3), dtype=numpy.float64) >>> vector_norm(v, axis=1, out=n) >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) True >>> vector_norm([]) 0.0 >>> vector_norm([1.0]) 1.0 """ data = numpy.array(data, dtype=numpy.float64, copy=True) if out is None: if data.ndim == 1: return math.sqrt(numpy.dot(data, data)) data *= data out = numpy.atleast_1d(numpy.sum(data, axis=axis)) numpy.sqrt(out, out) return out else: data *= data numpy.sum(data, axis=axis, out=out) numpy.sqrt(out, out)
Example #30
Source File: interpolate_wrapper.py From lambda-packs with MIT License | 5 votes |
def nearest(x, y, new_x): """ Rounds each new x to nearest input x and returns corresponding input y. Parameters ---------- x : array_like Independent values. y : array_like Dependent values. new_x : array_like The x values to return the interpolate y values. Returns ------- nearest : ndarray Rounds each `new_x` to nearest `x` and returns the corresponding `y`. """ shifted_x = np.concatenate((np.array([x[0]-1]), x[0:-1])) midpoints_of_x = atleast_1d_and_contiguous(.5*(x + shifted_x)) new_x = atleast_1d_and_contiguous(new_x) TINY = 1e-10 indices = np.searchsorted(midpoints_of_x, new_x+TINY)-1 indices = np.atleast_1d(np.clip(indices, 0, np.Inf).astype(int)) new_y = np.take(y, indices, axis=-1) return new_y