Python numpy.msort() Examples
The following are 25
code examples of numpy.msort().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: sort.py From cupy with MIT License | 6 votes |
def msort(a): """Returns a copy of an array sorted along the first axis. Args: a (cupy.ndarray): Array to be sorted. Returns: cupy.ndarray: Array of the same type and shape as ``a``. .. note: ``cupy.msort(a)``, the CuPy counterpart of ``numpy.msort(a)``, is equivalent to ``cupy.sort(a, axis=0)``. .. seealso:: :func:`numpy.msort` """ return sort(a, axis=0)
Example #2
Source File: function_base.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #3
Source File: function_base.py From keras-lambda with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #4
Source File: function_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #5
Source File: function_base.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #6
Source File: function_base.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #7
Source File: test_quantity_non_ufuncs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_msort(self): self.check(np.msort)
Example #8
Source File: function_base.py From coffeegrindsize with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #9
Source File: function_base.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #10
Source File: function_base.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #11
Source File: function_base.py From ImageFusion with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #12
Source File: function_base.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #13
Source File: function_base.py From pySINDy with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #14
Source File: function_base.py From recruit with Apache License 2.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #15
Source File: function_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #16
Source File: function_base.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #17
Source File: function_base.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #18
Source File: function_base.py From Computable with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #19
Source File: function_base.py From vnpy_crypto with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #20
Source File: function_base.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #21
Source File: function_base.py From lambda-packs with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #22
Source File: function_base.py From lambda-packs with MIT License | 5 votes |
def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b
Example #23
Source File: mcbs.py From westpa with MIT License | 5 votes |
def bootstrap_ci(estimator, data, alpha, n_sets=None, sort=numpy.msort, eargs=(), ekwargs={}): '''Perform a Monte Carlo bootstrap of a (1-alpha) confidence interval for the given ``estimator``. Returns (fhat, ci_lower, ci_upper), where fhat is the result of ``estimator(data, *eargs, **ekwargs)``, and ``ci_lower`` and ``ci_upper`` are the lower and upper bounds of the surrounding confidence interval, calculated by calling ``estimator(syndata, *eargs, **ekwargs)`` on each synthetic data set ``syndata``. If ``n_sets`` is provided, that is the number of synthetic data sets generated, otherwise an appropriate size is selected automatically (see ``calc_mcbs_nsets()``). ``sort``, if given, is applied to sort the results of calling ``estimator`` on each synthetic data set prior to obtaining the confidence interval. This function must sort on the last index. Individual entries in synthetic data sets are selected by the first index of ``data``, allowing this function to be used on arrays of multidimensional data. Returns (fhat, lb, ub, ub-lb, abs((ub-lb)/fhat), and max(ub-fhat,fhat-lb)) (that is, the estimated value, the lower and upper bounds of the confidence interval, the width of the confidence interval, the relative width of the confidence interval, and the symmetrized error bar of the confidence interval).''' data = numpy.asanyarray(data) fhat = numpy.squeeze(estimator(data, *eargs, **ekwargs)) n_sets = n_sets or calc_mcbs_nsets(alpha) fsynth = numpy.empty((n_sets,), dtype=fhat.dtype) try: return bootstrap_ci_ll(estimator, data, alpha, n_sets or calc_mcbs_nsets(alpha), fsynth, sort, eargs, ekwargs, fhat) finally: del fsynth
Example #24
Source File: binarization.py From pySCENIC with GNU General Public License v3.0 | 4 votes |
def derive_threshold(auc_mtx: pd.DataFrame, regulon_name: str, seed=None, method: str = 'hdt') -> float: ''' Derive threshold on the AUC values of the given regulon to binarize the cells in two clusters: "on" versus "off" state of the regulator. :param auc_mtx: The dataframe with the AUC values for all cells and regulons (n_cells x n_regulons). :param regulon_name: the name of the regulon for which to predict the threshold. :param method: The method to use to decide if the distribution of AUC values for the given regulon is not unimodel. Can be either Hartigan's Dip Test (HDT) or Bayesian Information Content (BIC). The former method performs better but takes considerable more time to execute (40min for 350 regulons). The BIC compares the BIC for two Gaussian Mixture Models: single versus two components. :return: The threshold on the AUC values. ''' assert auc_mtx is not None and not auc_mtx.empty assert regulon_name in auc_mtx.columns assert method in {'hdt', 'bic'} data = auc_mtx[regulon_name].values if seed: np.random.seed(seed=seed) def isbimodal(data, method): if method == 'hdt': # Use Hartigan's dip statistic to decide if distribution deviates from unimodality. _, pval, _ = diptst(np.msort(data)) return (pval is not None) and (pval <= 0.05) else: # Compare Bayesian Information Content of two Gaussian Mixture Models. X = data.reshape(-1, 1) gmm2 = mixture.GaussianMixture(n_components=2, covariance_type='full', random_state=seed).fit(X) gmm1 = mixture.GaussianMixture(n_components=1, covariance_type='full', random_state=seed).fit(X) return gmm2.bic(X) <= gmm1.bic(X) if not isbimodal(data, method): # For a unimodal distribution the threshold is set as mean plus two standard deviations. return data.mean() + 2.0*data.std() else: # Fit a two component Gaussian Mixture model on the AUC distribution using an Expectation-Maximization algorithm # to identify the peaks in the distribution. gmm2 = mixture.GaussianMixture(n_components=2, covariance_type='full', random_state=seed).fit(data.reshape(-1, 1)) # For a bimodal distribution the threshold is defined as the "trough" in between the two peaks. # This is solved as a minimization problem on the kernel smoothed density. return minimize_scalar(fun=stats.gaussian_kde(data), bounds=sorted(gmm2.means_), method='bounded').x[0]
Example #25
Source File: mcbs.py From westpa with MIT License | 4 votes |
def bootstrap_ci(estimator, data, alpha, n_sets=None, args=(), kwargs={}, sort=numpy.msort, extended_output = False): '''Perform a Monte Carlo bootstrap of a (1-alpha) confidence interval for the given ``estimator``. Returns (fhat, ci_lower, ci_upper), where fhat is the result of ``estimator(data, *args, **kwargs)``, and ``ci_lower`` and ``ci_upper`` are the lower and upper bounds of the surrounding confidence interval, calculated by calling ``estimator(syndata, *args, **kwargs)`` on each synthetic data set ``syndata``. If ``n_sets`` is provided, that is the number of synthetic data sets generated, otherwise an appropriate size is selected automatically (see ``get_bssize()``). ``sort``, if given, is applied to sort the results of calling ``estimator`` on each synthetic data set prior to obtaining the confidence interval. Individual entries in synthetic data sets are selected by the first index of ``data``, allowing this function to be used on arrays of multidimensional data. If ``extended_output`` is True (by default not), instead of returning (fhat, lb, ub), this function returns (fhat, lb, ub, ub-lb, abs((ub-lb)/fhat), and max(ub-fhat,fhat-lb)) (that is, the estimated value, the lower and upper bounds of the confidence interval, the width of the confidence interval, the relative width of the confidence interval, and the symmetrized error bar of the confidence interval).''' data = numpy.asanyarray(data) fhat = estimator(data, *args, **kwargs) try: estimator_shape = fhat.shape except AttributeError: estimator_shape = () try: estimator_dtype = fhat.dtype except AttributeError: estimator_dtype = type(fhat) dlen = len(data) n_sets = n_sets or get_bssize(alpha) f_synth = numpy.empty((n_sets,) + estimator_shape, dtype=estimator_dtype) for i in range(0, n_sets): indices = numpy.random.randint(dlen, size=(dlen,)) f_synth[i] = estimator(data[indices], *args, **kwargs) f_synth_sorted = sort(f_synth) lbi = int(math.floor(n_sets*alpha/2)) ubi = int(math.ceil(n_sets*(1-alpha/2))) lb = f_synth_sorted[lbi] ub = f_synth_sorted[ubi] try: if extended_output: return (fhat, lb, ub, ub-lb, abs((ub-lb)/fhat) if fhat else 0, max(ub-fhat,fhat-lb)) else: return (fhat, lb, ub) finally: # Do a little explicit memory management del f_synth, f_synth_sorted