Python numpy.isneginf() Examples
The following are 30
code examples of numpy.isneginf().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: Scalers.py From scattertext with Apache License 2.0 | 6 votes |
def scale_neg_1_to_1_with_zero_mean_log_abs_max(v): ''' !!! not working ''' df = pd.DataFrame({'v':v, 'sign': (v > 0) * 2 - 1}) df['lg'] = np.log(np.abs(v)) / np.log(1.96) df['exclude'] = (np.isinf(df.lg) | np.isneginf(df.lg)) for mask in [(df['sign'] == -1) & (df['exclude'] == False), (df['sign'] == 1) & (df['exclude'] == False)]: df[mask]['lg'] = df[mask]['lg'].max() - df[mask]['lg'] df['lg'] *= df['sign'] df['lg'] = df['lg'].fillna(0) print(df[df['exclude']]['lg'].values) #to_rescale = convention_df['lg'].reindex(v.index) df['to_out'] = scale_neg_1_to_1_with_zero_mean_abs_max(df['lg']) print('right') print(df.sort_values(by='lg').iloc[:5]) print(df.sort_values(by='lg').iloc[-5:]) print('to_out') print(df.sort_values(by='to_out').iloc[:5]) print(df.sort_values(by='to_out').iloc[-5:]) print(len(df), len(df.dropna())) return df['to_out']
Example #2
Source File: common.py From sparse with BSD 3-Clause "New" or "Revised" License | 6 votes |
def isneginf(x, out=None): """ Test element-wise for negative infinity, return result as sparse ``bool`` array. Parameters ---------- x Input out, optional Output array Examples -------- >>> import sparse >>> x = sparse.as_coo(np.array([-np.inf])) >>> sparse.isneginf(x).todense() array([ True]) See Also -------- numpy.isneginf : The NumPy equivalent """ from .core import elemwise return elemwise(lambda x, out=None, dtype=None: np.isneginf(x, out=out), x, out=out)
Example #3
Source File: data_loader.py From factorized with MIT License | 6 votes |
def load_covarep(truth_dict): for video_index in truth_dict: file_name = covarep_path + video_index + '.mat' fts = sio.loadmat(file_name)['features'] #print fts.shape for seg_index in truth_dict[video_index]: for w in truth_dict[video_index][seg_index]['data']: start_frame = int(w['start_time_clip']*100) end_frame = int(w['end_time_clip']*100) ft = fts[start_frame:end_frame] if ft.shape[0] == 0: avg_ft = np.zeros(ft.shape[1]) else: #print np.array(ft).shape #print ft[0] avg_ft = np.mean(ft,0) avg_ft[np.isnan(avg_ft)] = 0 avg_ft[np.isneginf(avg_ft)] = 0 w['covarep'] = avg_ft
Example #4
Source File: numutils.py From cooltools with MIT License | 6 votes |
def fill_inf(arr, pos_value=0, neg_value=0, copy=True): """Replaces positive and negative infinity entries in an array with the provided values. Parameters ---------- arr : np.array pos_value : float Fill value for np.inf neg_value : float Fill value for -np.inf copy : bool, optional If True, creates a copy of x, otherwise replaces values in-place. By default, True. """ if copy: arr = arr.copy() arr[np.isposinf(arr)] = pos_value arr[np.isneginf(arr)] = neg_value return arr
Example #5
Source File: DNGR.py From DNGR-Keras with MIT License | 6 votes |
def PPMI_matrix(M): M = scale_sim_mat(M) nm_nodes = len(M) col_s = np.sum(M, axis=0).reshape(1,nm_nodes) row_s = np.sum(M, axis=1).reshape(nm_nodes,1) D = np.sum(col_s) rowcol_s = np.dot(row_s,col_s) PPMI = np.log(np.divide(D*M,rowcol_s)) PPMI[np.isnan(PPMI)] = 0.0 PPMI[np.isinf(PPMI)] = 0.0 PPMI[np.isneginf(PPMI)] = 0.0 PPMI[PPMI<0] = 0.0 return PPMI
Example #6
Source File: data_loader.py From MFN with MIT License | 6 votes |
def load_covarep(truth_dict): for video_index in truth_dict: file_name = covarep_path + video_index + '.mat' fts = sio.loadmat(file_name)['features'] #print fts.shape for seg_index in truth_dict[video_index]: for w in truth_dict[video_index][seg_index]['data']: start_frame = int(w['start_time_clip']*100) end_frame = int(w['end_time_clip']*100) ft = fts[start_frame:end_frame] if ft.shape[0] == 0: avg_ft = np.zeros(ft.shape[1]) else: #print np.array(ft).shape #print ft[0] avg_ft = np.mean(ft,0) avg_ft[np.isnan(avg_ft)] = 0 avg_ft[np.isneginf(avg_ft)] = 0 w['covarep'] = avg_ft
Example #7
Source File: test_node.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_is_inf(self): if legacy_opset_pre_ver(10): raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format( defs.onnx_opset_version())) input = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf], dtype=np.float32) expected_output = { "node_def": np.isinf(input), "node_def_neg_false": np.isposinf(input), "node_def_pos_false": np.isneginf(input) } node_defs = { "node_def": helper.make_node("IsInf", ["X"], ["Y"]), "node_def_neg_false": helper.make_node("IsInf", ["X"], ["Y"], detect_negative=0), "node_def_pos_false": helper.make_node("IsInf", ["X"], ["Y"], detect_positive=0) } for key in node_defs: output = run_node(node_defs[key], [input]) np.testing.assert_equal(output["Y"], expected_output[key])
Example #8
Source File: util.py From gluon-ts with Apache License 2.0 | 6 votes |
def jsonify_floats(json_object): """ Traverses through the JSON object and converts non JSON-spec compliant floats(nan, -inf, inf) to their string representations. Parameters ---------- json_object JSON object """ if isinstance(json_object, dict): return {k: jsonify_floats(v) for k, v in json_object.items()} elif isinstance(json_object, list): return [jsonify_floats(item) for item in json_object] elif isinstance(json_object, float): if np.isnan(json_object): return "NaN" elif np.isposinf(json_object): return "Infinity" elif np.isneginf(json_object): return "-Infinity" return json_object return json_object
Example #9
Source File: converters.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def output(self, value, mask): if mask: return self._null_output if np.isfinite(value): if not np.isscalar(value): value = value.dtype.type(value) result = self._output_format.format(value) if result.startswith('array'): raise RuntimeError() if (self._output_format[2] == 'r' and result.endswith('.0')): result = result[:-2] return result elif np.isnan(value): return 'NaN' elif np.isposinf(value): return '+InF' elif np.isneginf(value): return '-InF' # Should never raise vo_raise(f"Invalid floating point value '{value}'")
Example #10
Source File: util_lstm_seqlabel.py From neural_wfst with MIT License | 5 votes |
def is_invalid(arr): return any([f(arr).any() for f in [numpy.isinf, numpy.isnan, numpy.isneginf]])
Example #11
Source File: dngr.py From cogdl with MIT License | 5 votes |
def get_ppmi_matrix(self, mat): # Get Positive Pairwise Mutual Information(PPMI) matrix mat = self.random_surfing(mat) M = self.scale_matrix(mat) col_s = np.sum(M, axis=0).reshape(1, self.num_node) row_s = np.sum(M, axis=1).reshape(self.num_node, 1) D = np.sum(col_s) rowcol_s = np.dot(row_s, col_s) PPMI = np.log(np.divide(D * M, rowcol_s)) PPMI[np.isnan(PPMI)] = 0.0 PPMI[np.isinf(PPMI)] = 0.0 PPMI[np.isneginf(PPMI)] = 0.0 PPMI[PPMI < 0] = 0.0 return PPMI
Example #12
Source File: test_pdp_script.py From neural_wfst with MIT License | 5 votes |
def tolerant_eq(a, b): return (True if (numpy.isinf(a) and numpy.isinf(b)) or (numpy.isneginf(a) and numpy.isneginf(b)) or abs(a-b) < 1e-10 else False)
Example #13
Source File: distributions.py From Neuraxle with Apache License 2.0 | 5 votes |
def _get_sum_starting_info(limits): if np.isinf(limits[0]) and np.isinf(limits[1]): raise ValueError("Cannot calculate a sum on infinite terms.") if np.isposinf(limits[0]): starting_value = limits[1] stop_value = limits[0] method = "increasing" elif np.isposinf(limits[1]): starting_value = limits[0] stop_value = limits[1] method = "increasing" elif np.isneginf(limits[0]): starting_value = limits[1] stop_value = limits[0] method = "decreasing" elif np.isneginf(limits[1]): starting_value = limits[0] stop_value = limits[1] method = "decreasing" elif np.greater(limits[1], limits[0]): starting_value = limits[0] stop_value = limits[1] method = "increasing" else: starting_value = limits[1] stop_value = limits[0] method = "increasing" return method, starting_value, stop_value
Example #14
Source File: distributions.py From Neuraxle with Apache License 2.0 | 5 votes |
def min(self): """ Calculate minimum value that can be sampled in the quanitzed version of the distribution. :return: minimal value return from distribution. """ hd_min = self.hd.min() if np.isneginf(hd_min): return hd_min return round(hd_min)
Example #15
Source File: test_quantity_non_ufuncs.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_isneginf(self): self.check(np.isneginf)
Example #16
Source File: utils.py From scvelo with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_mean_var(X, ignore_zeros=False, perc=None): data = X.data if issparse(X) else X mask_nans = np.isnan(data) | np.isinf(data) | np.isneginf(data) n_nonzeros = (X != 0).sum(0) n_counts = n_nonzeros if ignore_zeros else X.shape[0] if mask_nans.sum() > 0: if issparse(X): data[np.isnan(data) | np.isinf(data) | np.isneginf(data)] = 0 n_nans = n_nonzeros - (X != 0).sum(0) else: X[mask_nans] = 0 n_nans = mask_nans.sum(0) n_counts -= n_nans if perc is not None: if np.size(perc) < 2: perc = [perc, 100] if perc < 50 else [0, perc] lb, ub = np.percentile(data, perc) data = np.clip(data, lb, ub) if issparse(X): mean = (X.sum(0) / n_counts).A1 mean_sq = (X.multiply(X).sum(0) / n_counts).A1 else: mean = X.sum(0) / n_counts mean_sq = np.multiply(X, X).sum(0) / n_counts n_cells = np.clip(X.shape[0], 2, None) # to avoid division by zero var = (mean_sq - mean ** 2) * (n_cells / (n_cells - 1)) mean = np.nan_to_num(mean) var = np.nan_to_num(var) return mean, var
Example #17
Source File: rank_velocity_genes.py From scvelo with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_mean_var(X, ignore_zeros=False, perc=None): data = X.data if issparse(X) else X mask_nans = np.isnan(data) | np.isinf(data) | np.isneginf(data) n_nonzeros = (X != 0).sum(0) n_counts = n_nonzeros if ignore_zeros else X.shape[0] if mask_nans.sum() > 0: if issparse(X): data[np.isnan(data) | np.isinf(data) | np.isneginf(data)] = 0 n_nans = n_nonzeros - (X != 0).sum(0) else: X[mask_nans] = 0 n_nans = mask_nans.sum(0) n_counts -= n_nans if perc is not None: if np.size(perc) < 2: perc = [perc, 100] if perc < 50 else [0, perc] lb, ub = np.percentile(data, perc) data = np.clip(data, lb, ub) if issparse(X): mean = (X.sum(0) / n_counts).A1 mean_sq = (X.multiply(X).sum(0) / n_counts).A1 else: mean = X.sum(0) / n_counts mean_sq = np.multiply(X, X).sum(0) / n_counts n_cells = np.clip(X.shape[0], 2, None) # to avoid division by zero var = (mean_sq - mean ** 2) * (n_cells / (n_cells - 1)) mean = np.nan_to_num(mean) var = np.nan_to_num(var) return mean, var
Example #18
Source File: utilities.py From tensorprob with MIT License | 5 votes |
def set_logp_to_neg_inf(X, logp, bounds): """Set `logp` to negative infinity when `X` is outside the allowed bounds. # Arguments X: tensorflow.Tensor The variable to apply the bounds to logp: tensorflow.Tensor The log probability corrosponding to `X` bounds: list of `Region` objects The regions corrosponding to allowed regions of `X` # Returns logp: tensorflow.Tensor The newly bounded log probability """ conditions = [] for l, u in bounds: lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l) upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u) if not lower_is_neg_inf and upper_is_pos_inf: conditions.append(tf.greater(X, l)) elif lower_is_neg_inf and not upper_is_pos_inf: conditions.append(tf.less(X, u)) elif not (lower_is_neg_inf or upper_is_pos_inf): conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u))) if len(conditions) > 0: is_inside_bounds = conditions[0] for condition in conditions[1:]: is_inside_bounds = tf.logical_or(is_inside_bounds, condition) logp = tf.select( is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)) ) return logp
Example #19
Source File: various.py From madminer with MIT License | 5 votes |
def sanitize_array(array, replace_nan=0.0, replace_inf=0.0, replace_neg_inf=0.0, min_value=None, max_value=None): array[np.isneginf(array)] = replace_neg_inf array[np.isinf(array)] = replace_inf array[np.isnan(array)] = replace_nan if min_value is not None or max_value is not None: array = np.clip(array, min_value, max_value) return array
Example #20
Source File: imputer.py From gordo with GNU Affero General Public License v3.0 | 5 votes |
def _fill_minmax(self, X: np.ndarray): """ Fill inf/-inf values in features of the array based on their min & max values. Compounded by the ``power`` value so long as the result doesn't exceed the current array's dtype's max/min. Otherwise it will use those. """ # For each feature fill inf/-inf with pre-calculate fill values for feature_idx, (posinf_fill, neginf_fill) in enumerate( zip(self._posinf_fill_values, self._neginf_fill_values) ): X[:, feature_idx][np.isposinf(X[:, feature_idx])] = posinf_fill X[:, feature_idx][np.isneginf(X[:, feature_idx])] = neginf_fill return X
Example #21
Source File: test_stattools.py From vnpy_crypto with MIT License | 5 votes |
def test_coint_identical_series(): nobs = 200 scale_e = 1 np.random.seed(123) y = scale_e * np.random.randn(nobs) warnings.simplefilter('always', ColinearityWarning) with warnings.catch_warnings(record=True) as w: c = coint(y, y, trend="c", maxlag=0, autolag=None) assert_equal(len(w), 1) assert_equal(c[1], 0.0) assert_(np.isneginf(c[0]))
Example #22
Source File: test_stattools.py From vnpy_crypto with MIT License | 5 votes |
def test_coint_perfect_collinearity(): # test uses nearly perfect collinearity nobs = 200 scale_e = 1 np.random.seed(123) x = scale_e * np.random.randn(nobs, 2) y = 1 + x.sum(axis=1) + 1e-7 * np.random.randn(nobs) warnings.simplefilter('always', ColinearityWarning) with warnings.catch_warnings(record=True) as w: c = coint(y, x, trend="c", maxlag=0, autolag=None) assert_equal(c[1], 0.0) assert_(np.isneginf(c[0]))
Example #23
Source File: test_tost.py From vnpy_crypto with MIT License | 5 votes |
def assert_almost_equal_inf(x, y, decimal=6, msg=None): x = np.atleast_1d(x) y = np.atleast_1d(y) assert_equal(np.isposinf(x), np.isposinf(y)) assert_equal(np.isneginf(x), np.isneginf(y)) assert_equal(np.isnan(x), np.isnan(y)) assert_almost_equal(x[np.isfinite(x)], y[np.isfinite(y)])
Example #24
Source File: test_transformers.py From gordo with GNU Affero General Public License v3.0 | 5 votes |
def test_infimputer_fill_values(): """ InfImputer when fill values are provided """ base_x = np.random.random((100, 10)).astype(np.float32) flat_view = base_x.ravel() pos_inf_idxs = [1, 2, 3, 4, 5] neg_inf_idxs = [6, 7, 8, 9, 10] flat_view[pos_inf_idxs] = np.inf flat_view[neg_inf_idxs] = -np.inf # Our base x should now be littered with pos/neg inf values assert np.isposinf(base_x).sum() > 0, "Expected some positive infinity values here" assert np.isneginf(base_x).sum() > 0, "Expected some negative infinity values here" imputer = InfImputer(inf_fill_value=9999.0, neg_inf_fill_value=-9999.0) X = imputer.fit_transform(base_x) np.equal( X.ravel()[[pos_inf_idxs]], np.array([9999.0, 9999.0, 9999.0, 9999.0, 9999.0]) ) np.equal( X.ravel()[[neg_inf_idxs]], np.array([-9999.0, -9999.0, -9999.0, -9999.0, -9999.0]), )
Example #25
Source File: imputer.py From gordo with GNU Affero General Public License v3.0 | 5 votes |
def transform(self, X: Union[pd.DataFrame, np.ndarray], y=None): # Ensure we're dealing with numpy array if it's a dataframe or similar X = X.values if hasattr(X, "values") else X # Apply specific fill values if provided. if self.inf_fill_value is not None: X[np.isposinf(X)] = self.inf_fill_value if self.neg_inf_fill_value is not None: X[np.isneginf(X)] = self.neg_inf_fill_value # May still be left over infs, if only one fill value was supplied for example if self.strategy is not None: return getattr(self, f"_fill_{self.strategy}")(X) return X
Example #26
Source File: imputer.py From gordo with GNU Affero General Public License v3.0 | 5 votes |
def _fill_extremes(self, X: np.ndarray): """ Fill negative and postive infs with their dtype's min/max values """ X[np.isposinf(X)] = np.finfo(X.dtype).max X[np.isneginf(X)] = np.finfo(X.dtype).min return X
Example #27
Source File: terminate_on_nan.py From mljar-supervised with MIT License | 5 votes |
def on_iteration_end(self, iter_cnt, data): loss_train = 0 if data.get("y_train_predicted") is not None: loss_train = self.metric( data.get("y_train_true"), data.get("y_train_predicted") ) loss_validation = self.metric( data.get("y_validation_true"), data.get("y_validation_predicted") ) for loss in [loss_train, loss_validation]: if np.isnan(loss) or np.isinf(loss) or np.isneginf(loss): self.learner.stop_training = True log.info("Terminating learning, invalid loss value")
Example #28
Source File: nanops.py From Computable with MIT License | 5 votes |
def _has_infs(result): if isinstance(result, np.ndarray): if result.dtype == 'f8': return lib.has_infs_f8(result) elif result.dtype == 'f4': return lib.has_infs_f4(result) return False return np.isinf(result) or np.isneginf(result)
Example #29
Source File: utils.py From smooth-topk with MIT License | 5 votes |
def assert_all_close(tensor_1, tensor_2, rtol=1e-4, atol=1e-4): tensor_1 = to_numpy(tensor_1).astype(np.float64) tensor_2 = to_numpy(tensor_2).astype(np.float64) np.testing.assert_equal(np.isposinf(tensor_1), np.isposinf(tensor_2)) np.testing.assert_equal(np.isneginf(tensor_1), np.isneginf(tensor_2)) indices = np.isfinite(tensor_1) if indices.sum(): tensor_1 = tensor_1[indices] tensor_2 = tensor_2[indices] err = np.max(np.abs(tensor_1 - tensor_2)) err_msg = "Max abs error: {0:.3g}".format(err) np.testing.assert_allclose(tensor_1, tensor_2, rtol=rtol, atol=atol, err_msg=err_msg)
Example #30
Source File: math_ops.py From trax with Apache License 2.0 | 5 votes |
def isneginf(x): return x == array_ops.full_like(x, -np.inf)