Python numpy.true_divide() Examples
The following are 30
code examples of numpy.true_divide().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: eval_mars.py From person-reid-lib with MIT License | 6 votes |
def confusion_matrix(ap, r1, cam_p, nCam): ap_mat = np.zeros((nCam, nCam), np.float32) r1_mat = np.zeros((nCam, nCam), np.float32) count1 = np.zeros((nCam, nCam), np.float32) + 1e-5 count2 = np.zeros((nCam, nCam), np.float32) + 1e-5 for i_p, p_i in enumerate(cam_p): for cam_i in range(nCam): ap_mat[p_i, cam_i] += ap[i_p, cam_i] if ap[i_p, cam_i] != 0: count1[p_i, cam_i] += 1 if r1[i_p, cam_i] >= 0: r1_mat[p_i, cam_i] += r1[i_p, cam_i] count2[p_i, cam_i] += 1 ap_mat = np.true_divide(ap_mat, count1) r1_mat = np.true_divide(r1_mat, count2) return r1_mat, ap_mat
Example #2
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD)
Example #3
Source File: test_ufunc.py From vnpy_crypto with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #4
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e))
Example #6
Source File: linear_svm.py From discomll with Apache License 2.0 | 6 votes |
def reduce_fit(interface, state, label, inp): """ Function joins all partially calculated matrices ETE and ETDe, aggregates them and it calculates final parameters. """ import numpy as np out = interface.output(0) sum_etde = 0 sum_ete = [0 for _ in range(len(state["X_indices"]) + 1)] for key, value in inp: if key == "etde": sum_etde += value else: sum_ete[key] += value sum_ete += np.true_divide(np.eye(len(sum_ete)), state["nu"]) out.add("params", np.linalg.lstsq(sum_ete, sum_etde)[0])
Example #7
Source File: evals.py From LaMP with MIT License | 6 votes |
def f1_score_from_stats(tp, fp, fn, average='micro'): assert len(tp) == len(fp) assert len(fp) == len(fn) if average not in set(['micro', 'macro']): raise ValueError("Specify micro or macro") if average == 'micro': f1 = 2*numpy.sum(tp) / \ float(2*numpy.sum(tp) + numpy.sum(fp) + numpy.sum(fn)) elif average == 'macro': def safe_div(a, b): """ ignore / 0, div0( [-1, 0, 1], 0 ) -> [0, 0, 0] """ with numpy.errstate(divide='ignore', invalid='ignore'): c = numpy.true_divide(a, b) return c[numpy.isfinite(c)] f1 = numpy.mean(safe_div(2*tp, 2*tp + fp + fn)) return f1
Example #8
Source File: utils.py From Brats2019 with MIT License | 6 votes |
def fit_cube_param(vol_dim, cube_size, ita): dim = np.asarray(vol_dim) fold = dim / cube_size + ita ovlap = np.ceil( np.true_divide( (fold * cube_size - dim), (fold - 1))) # dim+ita*cubesize-dim ovlap = ovlap.astype('int') # print( "ovlap:", str( ovlap ) )#[62 62 86] fold = np.ceil(np.true_divide((dim + (fold - 1) * ovlap), cube_size)) fold = fold.astype('int') # print( "fold:", str( fold) ) fold: [8 8 6] return fold, ovlap # decompose volume into list of cubes
Example #9
Source File: test_ufunc.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #10
Source File: test_ufunc.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod ] # These functions still return NotImplemented. Will be fixed in # future. # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal] a = np.array('1') b = 1 for f in binary_funcs: assert_raises(TypeError, f, a, b)
Example #11
Source File: math_ops.py From trax with Apache License 2.0 | 6 votes |
def true_divide(x1, x2): def _avoid_float64(x1, x2): if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64): x1 = tf.cast(x1, dtype=tf.float32) x2 = tf.cast(x2, dtype=tf.float32) return x1, x2 def f(x1, x2): if x1.dtype == tf.bool: assert x2.dtype == tf.bool float_ = dtypes.default_float_type() x1 = tf.cast(x1, float_) x2 = tf.cast(x2, float_) if not dtypes.is_allow_float64(): # tf.math.truediv in Python3 produces float64 when both inputs are int32 # or int64. We want to avoid that when is_allow_float64() is False. x1, x2 = _avoid_float64(x1, x2) return tf.math.truediv(x1, x2) return _bin_op(f, x1, x2)
Example #12
Source File: test_ufunc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_NotImplemented_not_returned(self): # See gh-5964 and gh-2091. Some of these functions are not operator # related and were fixed for other reasons in the past. binary_funcs = [ np.power, np.add, np.subtract, np.multiply, np.divide, np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, np.logical_and, np.logical_or, np.logical_xor, np.maximum, np.minimum, np.mod, np.greater, np.greater_equal, np.less, np.less_equal, np.equal, np.not_equal] a = np.array('1') b = 1 c = np.array([1., 2.]) for f in binary_funcs: assert_raises(TypeError, f, a, b) assert_raises(TypeError, f, c, a)
Example #13
Source File: sammon.py From CatLearn with GNU General Public License v3.0 | 5 votes |
def sammons_error(original, reduced): """Sammon error. Parameters ---------- original : array The original feature set. reduced : array The reduced feature set. Returns ------- error : float Sammon's error value. """ # Calculate Euclidean distances. original_dist = distance.squareform( distance.pdist(original, metric='euclidean')) reduced_dist = distance.squareform( distance.pdist(reduced, metric='euclidean')) # Setup i < j part. original_tri = np.tril(original_dist, -1) reduced_tri = np.tril(reduced_dist, -1) # Expect division by zero warnings. with np.errstate(invalid='ignore'): dist_err = np.true_divide( (original_tri - reduced_tri) ** 2, original_tri) # Replace NAN values from zero division dist_err[np.isnan(dist_err)] = 0. # Calculate the actual error. error = (1. / original_tri.sum()) * dist_err.sum() return error
Example #14
Source File: test_core.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)
Example #15
Source File: base.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def __div__(self, other): # Always do true division return self._divide(other, true_divide=True)
Example #16
Source File: adsorbate.py From CatLearn with GNU General Public License v3.0 | 5 votes |
def db_size(self, atoms=None): """Return a fingerprint containing the number of layers in the slab, the number of surface atoms in the unit cell and the adsorbate coverage. Parameters ---------- atoms : object ASE Atoms object. Returns ---------- features : list If None was passed, the elements are strings, naming the feature. """ labels = ['layers', 'size', 'coverage'] if atoms is None: return labels else: try: layers = float(atoms.info['key_value_pairs']['layers']) except KeyError: layers = np.nan try: n = float(atoms.info['key_value_pairs']['n']) except KeyError: n = np.nan size = len(atoms.subsets['termination_atoms']) coverage = np.true_divide(n, size) return layers, size, coverage
Example #17
Source File: feature_engineering.py From CatLearn with GNU General Public License v3.0 | 5 votes |
def get_div_order_2(A): """Get all combinations x_ij = x_i / x_j, where x_i,j are features. The sorting order in dimension 0 is preserved. If a denominator is 0, Inf is returned. Parameters ---------- A : array n x m matrix, where n is the number of training examples and m is the number of features. Returns ------- new_features : array The n x m**2 matrix of new features. """ shapeA = np.shape(A) nfi = 0 # Check if data will fit in memory. if (A.nbytes / shapeA[1]) * (shapeA[1] ** 2) > \ psutil.virtual_memory().available * 0.75: raise MemoryError("Not enough memory for operation.") # Preallocate. new_features = np.zeros([shapeA[0], shapeA[1]**2]) for f1 in range(shapeA[1]): for f2 in range(shapeA[1]): if f1 != f2: new_feature = np.true_divide(A[:, f1], A[:, f2]) new_features[:, nfi] = new_feature nfi += 1 return new_features
Example #18
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInt64Basic(self): x = np.arange(1 << 40, 13 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int64) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD)
Example #19
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplex128Basic(self): x = np.complex(1, 1) * np.linspace(-10, 10, 6).reshape(1, 3, 2).astype( np.complex128) y = np.complex(1, 1) * np.linspace(20, -20, 6).reshape(1, 3, 2).astype( np.complex128) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV)
Example #20
Source File: test_core.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)
Example #21
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testUint16Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.uint16) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.uint16) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV)
Example #22
Source File: boltzman_agent_bandit.py From dissecting-reinforcement-learning with MIT License | 5 votes |
def boltzmann(x, temperature): """Compute boltzmann distribution of array x. @param x the input array @param temperature @return the boltzmann array """ exponent = np.true_divide(x - np.max(x), temperature) return np.exp(exponent) / np.sum(np.exp(exponent))
Example #23
Source File: evaluation.py From seq2seq with Apache License 2.0 | 5 votes |
def divide(x, y): with np.errstate(divide='ignore', invalid='ignore'): z = np.true_divide(x, y) z[~ np.isfinite(z)] = 0 return z
Example #24
Source File: grid.py From deep_pipe with MIT License | 5 votes |
def combine(patches: Iterable[np.ndarray], output_shape: AxesLike, stride: AxesLike, axes: AxesLike = None, valid: bool = False) -> np.ndarray: """ Build a tensor of shape ``output_shape`` from ``patches`` obtained in a convolution-like approach with corresponding parameters. The overlapping parts are averaged. References ---------- See the :doc:`tutorials/patches` tutorial for more details. """ axes, stride = broadcast_to_axes(axes, stride) patch, patches = peek(patches) patch_size = np.array(patch.shape)[list(axes)] if len(np.atleast_1d(output_shape)) != patch.ndim: output_shape = fill_by_indices(patch.shape, output_shape, axes) dtype = patch.dtype if not np.issubdtype(dtype, np.floating): dtype = float result = np.zeros(output_shape, dtype) counts = np.zeros(output_shape, int) for box, patch in zip_equal(get_boxes(output_shape, patch_size, stride, axes, valid), patches): slc = build_slices(*box) result[slc] += patch counts[slc] += 1 np.true_divide(result, counts, out=result, where=counts > 0) return result
Example #25
Source File: xc_metrics.py From pyxclib with MIT License | 5 votes |
def jaccard_similarity(pred_0, pred_1, y=None): """Jaccard similary b/w two different predictions matrices Args: pred_0: csr_matrix prediction for algorithm 0 pred_1: csr_matrix prediction for algorithm 1 y: csr_matrix or None true labels """ def _correct_only(pred, y): pred = pred.multiply(y) pred.eliminate_zeros() return pred def _safe_divide(a, b): with np.errstate(divide='ignore', invalid='ignore'): out = np.true_divide(a, b) out[out == np.inf] = 0 return np.nan_to_num(out) if y is not None: pred_0 = _correct_only(pred_0, y) pred_1 = _correct_only(pred_1, y) pred_0, pred_1 = binarize(pred_0), binarize(pred_1) intersection = np.array(pred_0.multiply(pred_1).sum(axis=1)).ravel() union = np.array(binarize(pred_0 + pred_1).sum(axis=1)).ravel() return np.mean(_safe_divide(intersection, union))
Example #26
Source File: epsilon_decreasing_agent_bandit.py From dissecting-reinforcement-learning with MIT License | 5 votes |
def main(): reward_distribution = [0.3, 0.5, 0.8] my_bandit = MultiArmedBandit(reward_probability_list=reward_distribution) epsilon_start = 0.1 epsilon_stop = 0.0001 tot_arms = 3 tot_episodes = 2000 tot_steps = 1000 print_every_episodes = 100 cumulated_reward_list = list() average_utility_array = np.zeros(tot_arms) epsilon_array = np.linspace(epsilon_start, epsilon_stop, num=tot_steps) print("Starting epsilon-decreasing agent...") for episode in range(tot_episodes): cumulated_reward = 0 reward_counter_array = np.zeros(tot_arms) action_counter_array = np.full(tot_arms, 1.0e-5) for step in range(tot_steps): epsilon = epsilon_array[step] action = return_epsilon_greedy_action(epsilon, np.true_divide(reward_counter_array, action_counter_array)) reward = my_bandit.step(action) reward_counter_array[action] += reward action_counter_array[action] += 1 cumulated_reward += reward # Append the cumulated reward for this episode in a list cumulated_reward_list.append(cumulated_reward) utility_array = np.true_divide(reward_counter_array, action_counter_array) average_utility_array += utility_array if episode % print_every_episodes == 0: print("Episode: " + str(episode)) print("Cumulated Reward: " + str(cumulated_reward)) print("Reward counter: " + str(reward_counter_array)) print("Utility distribution: " + str(utility_array)) print("Utility RMSE: " + str(return_rmse(utility_array, reward_distribution))) print("") # Print the average cumulated reward for all the episodes print("Average cumulated reward: " + str(np.mean(cumulated_reward_list))) print("Std Cumulated Reward: " + str(np.std(cumulated_reward_list))) print("Average utility distribution: " + str(average_utility_array / tot_episodes)) print("Average utility RMSE: " + str(return_rmse(average_utility_array/tot_episodes, reward_distribution)))
Example #27
Source File: test_core.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_ufunc_nomask(self): # check the case ufuncs should set the mask to false m = np.ma.array([1]) # check we don't get array([False], dtype=bool) assert_equal(np.true_divide(m, 5).mask.shape, ())
Example #28
Source File: histograms.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _hist_bin_doane(x, range): """ Doane's histogram bin estimator. Improved version of Sturges' formula which works better for non-normal data. See stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning Parameters ---------- x : array_like Input data that is to be histogrammed, trimmed to range. May not be empty. Returns ------- h : An estimate of the optimal bin width for the given data. """ del range # unused if x.size > 2: sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) sigma = np.std(x) if sigma > 0.0: # These three operations add up to # g1 = np.mean(((x - np.mean(x)) / sigma)**3) # but use only one temp array instead of three temp = x - np.mean(x) np.true_divide(temp, sigma, temp) np.power(temp, 3, temp) g1 = np.mean(temp) return x.ptp() / (1.0 + np.log2(x.size) + np.log2(1.0 + np.absolute(g1) / sg1)) return 0.0
Example #29
Source File: reinforcement_learning.py From pyERA with MIT License | 5 votes |
def predict_informant_reliability(self, informant_index): """Predict the reliability of an informant based on the experience accumulated. This function is a random sampling in the informant reliability distribution. The distribution is updated after each training call for that informant. @param informant_index: the index representing the informant (int) @return: return 0=unreliable or 1=reliable """ informant_distribution = np.true_divide(self.informant_vector[informant_index], np.sum(self.informant_vector[informant_index])) informant_performance = np.random.choice(2, 1, p=informant_distribution) return int(informant_performance) # 0=unreliable, 1=reliable
Example #30
Source File: test_core.py From vnpy_crypto with MIT License | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)