Python numpy.nanstd() Examples
The following are 30
code examples of numpy.nanstd().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_nanfunctions.py From recruit with Apache License 2.0 | 7 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #2
Source File: test_nanfunctions.py From Computable with MIT License | 6 votes |
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example #3
Source File: _well_cross_section_fmu.py From webviz-subsurface with GNU General Public License v3.0 | 6 votes |
def calculate_surface_statistics( realdf, ensemble, surfacefile, surfacefolder ) -> io.BytesIO: fns = [ os.path.join(real_path, surfacefolder, surfacefile) for real_path in list(realdf[realdf["ENSEMBLE"] == ensemble]["RUNPATH"]) ] surfaces = get_surfaces(fns) return io.BytesIO( json.dumps( { "mean": surface_to_json(surfaces.apply(np.nanmean, axis=0)), "maximum": surface_to_json(surfaces.apply(np.nanmax, axis=0)), "minimum": surface_to_json(surfaces.apply(np.nanmin, axis=0)), "p10": surface_to_json(surfaces.apply(np.nanpercentile, 10, axis=0)), "p90": surface_to_json(surfaces.apply(np.nanpercentile, 90, axis=0)), "stddev": surface_to_json(surfaces.apply(np.nanstd, axis=0)), } ).encode() )
Example #4
Source File: meanvar.py From cupy with MIT License | 6 votes |
def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the standard deviation along an axis ignoring NaN values. Args: a (cupy.ndarray): Array to compute standard deviation. axis (int): Along which axis to compute standard deviation. The flattened array is used by default. dtype: Data type specifier. out (cupy.ndarray): Output array. keepdims (bool): If ``True``, the axis is remained as an axis of size one. Returns: cupy.ndarray: The standard deviation of the input array along the axis. .. seealso:: :func:`numpy.nanstd` """ if a.dtype.kind in 'biu': return a.std(axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) # TODO(okuta): check type return _statistics._nanstd( a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims)
Example #5
Source File: test_nanfunctions.py From recruit with Apache License 2.0 | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #6
Source File: _reservoir_simulation_timeseries_regional.py From webviz-subsurface with GNU General Public License v3.0 | 6 votes |
def calc_statistics(df): # Switched P10 and P90 due to convention in petroleum industry def p10(x): return np.nanpercentile(x, q=90) def p90(x): return np.nanpercentile(x, q=10) stat_dfs = [] for ens, ens_df in df.groupby("ENSEMBLE"): stat_dfs.append( ens_df.drop(columns=["REAL", "ENSEMBLE"]) .groupby("DATE", as_index=False) .agg([np.nanmean, np.nanstd, np.nanmin, np.nanmax, p10, p90]) .reset_index() .assign(ENSEMBLE=ens) ) return pd.concat(stat_dfs)
Example #7
Source File: test_nanfunctions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #8
Source File: test_nanfunctions.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #9
Source File: _surface_viewer_fmu.py From webviz-subsurface with GNU General Public License v3.0 | 6 votes |
def save_surface(fns, statistic) -> io.BytesIO: surfaces = xtgeo.Surfaces(fns) if len(surfaces.surfaces) == 0: surface = xtgeo.RegularSurface() elif statistic == "Mean": surface = surfaces.apply(np.nanmean, axis=0) elif statistic == "StdDev": surface = surfaces.apply(np.nanstd, axis=0) elif statistic == "Min": surface = surfaces.apply(np.nanmin, axis=0) elif statistic == "Max": surface = surfaces.apply(np.nanmax, axis=0) elif statistic == "P10": surface = surfaces.apply(np.nanpercentile, 10, axis=0) elif statistic == "P90": surface = surfaces.apply(np.nanpercentile, 90, axis=0) else: surface = xtgeo.RegularSurface() return io.BytesIO(surface_to_json(surface).encode())
Example #10
Source File: test_nanfunctions.py From lambda-packs with MIT License | 6 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #11
Source File: test_nanfunctions.py From lambda-packs with MIT License | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #12
Source File: evaluate_submission.py From BIRL with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _compute_scores_general(df_experiments, df_expt_robust): # parse specific metrics scores = { 'Average-Robustness': np.mean(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]), 'STD-Robustness': np.std(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]), 'Median-Robustness': np.median(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]), 'Average-Rank-Median-rTRE': np.nan, 'Average-Rank-Max-rTRE': np.nan, } # parse Mean & median specific measures for name, col in [('Median-rTRE', 'rTRE Median'), ('Max-rTRE', 'rTRE Max'), ('Average-rTRE', 'rTRE Mean'), ('Norm-Time', COL_NORM_TIME)]: for df, sufix in [(df_experiments, ''), (df_expt_robust, '-Robust')]: scores['Average-' + name + sufix] = np.nanmean(df[col]) scores['STD-' + name + sufix] = np.nanstd(df[col]) scores['Median-' + name + sufix] = np.median(df[col]) return scores
Example #13
Source File: Evaluate.py From vimss with GNU General Public License v3.0 | 6 votes |
def compute_mean_metrics(json_folder, compute_averages=True): files = glob.glob(os.path.join(json_folder, "*.json")) sdr_inst_list = None for path in files: #print(path) with open(path, "r") as f: js = json.load(f) if sdr_inst_list is None: sdr_inst_list = [list() for _ in range(len(js["targets"]))] for i in range(len(js["targets"])): sdr_inst_list[i].extend([np.float(f['metrics']["SDR"]) for f in js["targets"][i]["frames"]]) #return np.array(sdr_acc), np.array(sdr_voc) sdr_inst_list = [np.array(sdr) for sdr in sdr_inst_list] if compute_averages: return [(np.nanmedian(sdr), np.nanmedian(np.abs(sdr - np.nanmedian(sdr))), np.nanmean(sdr), np.nanstd(sdr)) for sdr in sdr_inst_list] else: return sdr_inst_list
Example #14
Source File: test_nanfunctions.py From lambda-packs with MIT License | 6 votes |
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 0)
Example #15
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 6 votes |
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 0)
Example #16
Source File: test_nanfunctions.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #17
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #18
Source File: test_nanfunctions.py From vnpy_crypto with MIT License | 6 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #19
Source File: test_nanfunctions.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #20
Source File: test_nanfunctions.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt)
Example #21
Source File: test_nanfunctions.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt)
Example #22
Source File: test_nanfunctions.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) else: assert_(len(w) == 0)
Example #23
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_rg_se_noint(self): assert_allclose(np.nanmean(map(t('rg_se'), self.rg_noint)), np.nanstd( map(t('rg_ratio'), self.rg_noint)), atol=0.02)
Example #24
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_tot_se(self): assert_allclose(np.nanmean(map(t('tot_se'), self.h2)), np.nanstd( map(t('tot'), self.h2)), atol=0.05)
Example #25
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_tot_se_noint(self): assert_allclose(np.nanmean(map(t('tot_se'), self.h2_noint)), np.nanstd( map(t('tot'), self.h2_noint)), atol=0.05)
Example #26
Source File: quadtree.py From kite with GNU General Public License v3.0 | 5 votes |
def std(self): """ Standard deviation of displacement :type: float """ return float(num.nanstd(self.displacement))
Example #27
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_gencov_int_se(self): assert_allclose(np.nanmean(map(t('intercept_se'), map(t('gencov'), self.rg))), np.nanstd( map(t('intercept'), map(t('gencov'), self.rg))), atol=0.1)
Example #28
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_gencov_cat_se(self): assert_allclose(np.nanstd(map(t('cat'), map(t('gencov'), self.rg))), np.nanmean( map(t('cat_se'), map(t('gencov'), self.rg))), atol=0.02)
Example #29
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_rg_se(self): assert_allclose(np.nanmean(map(t('rg_se'), self.rg)), np.nanstd( map(t('rg_ratio'), self.rg)), atol=0.02)
Example #30
Source File: test_sumstats.py From mtag with GNU General Public License v3.0 | 5 votes |
def test_gencov_tot_se(self): assert_allclose(np.nanstd(map(t('tot'), map(t('gencov'), self.rg))), np.nanmean( map(t('tot_se'), map(t('gencov'), self.rg))), atol=0.02)