Python numpy.array_split() Examples

The following are 30 code examples of numpy.array_split(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy , or try the search function .
Example #1
Source File: TargetingSystem.py    From poeai with MIT License 7 votes vote down vote up
def Train(self, C, A, Y, SF):
        '''
        Train the classifier using the sample matrix A and target matrix Y
        '''
        C.fit(A, Y)
        YH = np.zeros(Y.shape, dtype = np.object)
        for i in np.array_split(np.arange(A.shape[0]), 32):   #Split up verification into chunks to prevent out of memory
            YH[i] = C.predict(A[i])
        s1 = SF(Y, YH)
        print('All:{:8.6f}'.format(s1))
        '''
        ss = ShuffleSplit(random_state = 1151)  #Use fixed state for so training can be repeated later
        trn, tst = next(ss.split(A, Y))         #Make train/test split
        mi = [8] * 1                            #Maximum number of iterations at each iter
        YH = np.zeros((A.shape[0]), dtype = np.object)
        for mic in mi:                                      #Chunk size to split dataset for CV results
            #C.SetMaxIter(mic)                               #Set the maximum number of iterations to run
            #C.fit(A[trn], Y[trn])                           #Perform training iterations
        ''' 
Example #2
Source File: np_box_list_ops.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #3
Source File: np_box_list_ops.py    From object_detector_app with MIT License 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #4
Source File: np_box_list_ops.py    From cartoonify with MIT License 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #5
Source File: np_box_list_ops.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #6
Source File: np_box_list_ops.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #7
Source File: bc.py    From garage with MIT License 6 votes vote down vote up
def _train_once(self, runner, epoch):
        """Obtain samplers and train for one epoch.

        Args:
            runner (LocalRunner): LocalRunner to which may be used to obtain
                samples.
            epoch (int): The current epoch.

        Returns:
            List[float]: Losses.

        """
        batch = self._obtain_samples(runner, epoch)
        indices = np.random.permutation(len(batch.actions))
        minibatches = np.array_split(indices, self._minibatches_per_epoch)
        losses = []
        for minibatch in minibatches:
            observations = np_to_torch(batch.observations[minibatch])
            actions = np_to_torch(batch.actions[minibatch])
            self._optimizer.zero_grad()
            loss = self._compute_loss(observations, actions)
            loss.backward()
            losses.append(loss.item())
            self._optimizer.step()
        return losses 
Example #8
Source File: dataset.py    From stable-baselines with MIT License 6 votes vote down vote up
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    """
    Iterates over arrays in batches, must provide either num_batches or batch_size, the other must be None.

    :param arrays: (tuple) a tuple of arrays
    :param num_batches: (int) the number of batches, must be None is batch_size is defined
    :param batch_size: (int) the size of the batch, must be None is num_batches is defined
    :param shuffle: (bool) enable auto shuffle
    :param include_final_partial_batch: (bool) add the last batch if not the same size as the batch_size
    :return: (tuples) a tuple of a batch of the arrays
    """
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n_samples = arrays[0].shape[0]
    assert all(a.shape[0] == n_samples for a in arrays[1:])
    inds = np.arange(n_samples)
    if shuffle:
        np.random.shuffle(inds)
    sections = np.arange(0, n_samples, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #9
Source File: interSubs.py    From interSubs with MIT License 6 votes vote down vote up
def split_long_lines(line, chunks = 2, max_symbols_per_line = False):
	if max_symbols_per_line:
		chunks = 0
		while 1:
			chunks += 1
			new_lines = []
			for i in range(chunks):
				new_line = ' '.join(numpy.array_split(line.split(' '), chunks)[i])
				new_lines.append(new_line)

			if len(max(new_lines, key = len)) <= max_symbols_per_line:
				return '\n'.join(new_lines)
	else:
		new_lines = []
		for i in range(chunks):
			new_line = ' '.join(numpy.array_split(line.split(' '), chunks)[i])
			new_lines.append(new_line)

		return '\n'.join(new_lines) 
Example #10
Source File: longtermmean.py    From yatsm with MIT License 6 votes vote down vote up
def group_years(years, interval=3):
    """ Return integers representing sequential groupings of years

    Note: years specified must be sorted

    Args:
        years (np.ndarray): the year corresponding to each EVI value
        interval (int, optional): number of years to group together
            (default: 3)

    Returns:
        np.ndarray: integers representing sequential year groupings

    """
    n_groups = math.ceil((years.max() - years.min()) / interval)
    if n_groups <= 1:
        return np.zeros_like(years, dtype=np.uint16)
    splits = np.array_split(np.arange(years.min(), years.max() + 1), n_groups)

    groups = np.zeros_like(years, dtype=np.uint16)
    for i, s in enumerate(splits):
        groups[np.in1d(years, s)] = i

    return groups 
Example #11
Source File: infl.py    From sgd-influence with MIT License 6 votes vote down vote up
def compute_gradient(model, loss_fn, device, dataset, idx):
    n = idx.size
    grad_idx = np.array_split(np.arange(n), test_batch_size)
    u = [torch.zeros(*param.shape, requires_grad=False).to(device) for param in model.parameters()]
    model.eval()
    for i in grad_idx:
        X = []
        y = []
        for ii in i:
            d = dataset[idx[ii]]
            X.append(d[0])
            y.append(d[1])
        X = torch.stack(X).to(device)
        y = torch.from_numpy(np.array(y)).to(device)
        z = model(X)
        loss = loss_fn(z, y, reduction='sum')
        model.zero_grad()
        loss.backward()
        for j, param in enumerate(model.parameters()):
            u[j] += param.grad.data / n
    return u 
Example #12
Source File: outlier.py    From sgd-influence with MIT License 6 votes vote down vote up
def eval_model(model, loss_fn, device, dataset, idx):
    model.eval()
    n = idx.size
    with torch.no_grad():
        loss = 0
        eval_idx = np.array_split(np.arange(n), test_batch_size)
        for i in eval_idx:
            x = []
            for ii in i:
                d = dataset[idx[ii]]
                x.append(d[0])
            x = torch.stack(x).to(device)
            y = model(x)
            loss += loss_fn(y, x).item() * i.size
        loss /= n
    return loss 
Example #13
Source File: np_box_list_ops.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #14
Source File: digits_adjust.py    From OpenCV-Python-Tutorial with MIT License 6 votes vote down vote up
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
    n = len(samples)
    folds = np.array_split(np.arange(n), kfold)
    def f(i):
        model = model_class(**params)
        test_idx = folds[i]
        train_idx = list(folds)
        train_idx.pop(i)
        train_idx = np.hstack(train_idx)
        train_samples, train_labels = samples[train_idx], labels[train_idx]
        test_samples, test_labels = samples[test_idx], labels[test_idx]
        model.train(train_samples, train_labels)
        resp = model.predict(test_samples)
        score = (resp != test_labels).mean()
        print(".", end='')
        return score
    if pool is None:
        scores = list(map(f, xrange(kfold)))
    else:
        scores = pool.map(f, xrange(kfold))
    return np.mean(scores) 
Example #15
Source File: train.py    From sgd-influence with MIT License 6 votes vote down vote up
def eval_model(model, loss_fn, device, dataset, idx):
    model.eval()
    n = idx.size
    with torch.no_grad():
        loss = 0
        acc = 0
        eval_idx = np.array_split(np.arange(n), test_batch_size)
        for i in eval_idx:
            X = []
            y = []
            for ii in i:
                d = dataset[idx[ii]]
                X.append(d[0])
                y.append(d[1])
            X = torch.stack(X).to(device)
            y = torch.from_numpy(np.array(y)).to(device)
            z = model(X)
            loss += loss_fn(z, y, reduction='sum').item()
            pred = z.argmax(dim=1, keepdim=True)
            acc += pred.eq(y.view_as(pred)).sum().item()
        loss /= n
        acc /= n
    return loss, acc 
Example #16
Source File: np_box_list_ops.py    From SlowFast-Network-pytorch with MIT License 6 votes vote down vote up
def scale(boxlist, y_scale, x_scale):
  """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  y_min = y_scale * y_min
  y_max = y_scale * y_max
  x_min = x_scale * x_min
  x_max = x_scale * x_max
  scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))

  fields = boxlist.get_extra_fields()
  for field in fields:
    extra_field_data = boxlist.get_field(field)
    scaled_boxlist.add_field(field, extra_field_data)

  return scaled_boxlist 
Example #17
Source File: _eigenpro.py    From scikit-learn-extra with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _raw_predict(self, X):
        """Predict using the kernel regression model

        Parameters
        ----------
        X : {float, array}, shape = [n_samples, n_features]
            Samples.

        Returns
        -------
        Y : {float, array}, shape = [n_samples, n_targets]
            Predicted targets.
        """
        check_is_fitted(
            self, ["bs_", "centers_", "coef_", "was_1D_", "gamma_"]
        )
        X = np.asarray(X, dtype=np.float64)

        if len(X.shape) == 1:
            raise ValueError(
                "Reshape your data. X should be a matrix of shape"
                " (n_samples, n_features)."
            )
        n = X.shape[0]

        Ys = []
        for batch_inds in np.array_split(range(n), max(1, n // self.bs_)):
            batch_x = X[batch_inds]
            kfeat = self._kernel(batch_x, self.centers_)

            pred = np.dot(kfeat, self.coef_)
            Ys.append(pred)
        Y = np.vstack(Ys)
        if self.was_1D_:
            Y = np.reshape(Y, Y.shape[0])
        return Y 
Example #18
Source File: dataset.py    From learning2run with MIT License 5 votes vote down vote up
def iterbatches(arrays, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n = arrays[0].shape[0]
    assert all(a.shape[0] == n for a in arrays[1:])
    inds = np.arange(n)
    if shuffle: np.random.shuffle(inds)
    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #19
Source File: np_box_list_ops.py    From cartoonify with MIT License 5 votes vote down vote up
def prune_outside_window(boxlist, window):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also ClipToWindow which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a numpy array of size 4, representing [ymin, xmin, ymax, xmax]
            of the window.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in.
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """

  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  coordinate_violations = np.hstack([np.less(y_min, win_y_min),
                                     np.less(x_min, win_x_min),
                                     np.greater(y_max, win_y_max),
                                     np.greater(x_max, win_x_max)])
  valid_indices = np.reshape(
      np.where(np.logical_not(np.max(coordinate_violations, axis=1))), [-1])
  return gather(boxlist, valid_indices), valid_indices 
Example #20
Source File: dataset.py    From DRL_DeliveryDuel with MIT License 5 votes vote down vote up
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n = arrays[0].shape[0]
    assert all(a.shape[0] == n for a in arrays[1:])
    inds = np.arange(n)
    if shuffle: np.random.shuffle(inds)
    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #21
Source File: dataset.py    From ICML2019-TREX with MIT License 5 votes vote down vote up
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n = arrays[0].shape[0]
    assert all(a.shape[0] == n for a in arrays[1:])
    inds = np.arange(n)
    if shuffle: np.random.shuffle(inds)
    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #22
Source File: dataset.py    From ICML2019-TREX with MIT License 5 votes vote down vote up
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n = arrays[0].shape[0]
    assert all(a.shape[0] == n for a in arrays[1:])
    inds = np.arange(n)
    if shuffle: np.random.shuffle(inds)
    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #23
Source File: misc.py    From Computable with MIT License 5 votes vote down vote up
def _split_quantile(arr, k):
    arr = np.asarray(arr)
    mask = np.isfinite(arr)
    order = arr[mask].argsort()
    n = len(arr)

    return np.array_split(np.arange(n)[mask].take(order), k) 
Example #24
Source File: experiment.py    From Neural-LP with MIT License 5 votes vote down vote up
def get_attentions(self):
        if self.option.query_is_language:
            num_batch = int(np.ceil(1.0*len(self.data.query_for_rules)/self.option.batch_size))
            query_batches = np.array_split(self.data.query_for_rules, num_batch)
        else:   
            #print(self.data.query_for_rules)
            if not self.option.type_check:
                num_batch = int(np.ceil(1.*len(self.data.query_for_rules)/self.option.batch_size))
                query_batches = np.array_split(self.data.query_for_rules, num_batch)       
            else:
                query_batches = [[i] for i in self.data.query_for_rules]

        all_attention_operators = {}
        all_attention_memories = {}

        for queries in query_batches:
            attention_operators, attention_memories \
            = self.learner.get_attentions_given_queries(self.sess, queries)
            
            # Tuple-ize in order to be used as dict keys
            if self.option.query_is_language:
                queries = [tuple(q) for q in queries]

            for i in xrange(len(queries)):
                all_attention_operators[queries[i]] \
                                        = [[attn[i] 
                                        for attn in attn_step] 
                                        for attn_step in attention_operators]
                all_attention_memories[queries[i]] = \
                                        [attn_step[i, :] 
                                        for attn_step in attention_memories]
        pickle.dump([all_attention_operators, all_attention_memories], 
                    open(os.path.join(self.option.this_expsdir, "attentions.pckl"), "w"))
               
        msg = self.msg_with_time("Attentions collected.")
        print(msg)
        self.log_file.write(msg + "\n")

        all_queries = reduce(lambda x,y: list(x) + list(y), query_batches, [])
        return all_attention_operators, all_attention_memories, all_queries 
Example #25
Source File: operators.py    From pyswarms with MIT License 5 votes vote down vote up
def compute_objective_function(swarm, objective_func, pool=None, **kwargs):
    """Evaluate particles using the objective function

    This method evaluates each particle in the swarm according to the objective
    function passed.

    If a pool is passed, then the evaluation of the particles is done in
    parallel using multiple processes.

    Parameters
    ----------
    swarm : pyswarms.backend.swarms.Swarm
        a Swarm instance
    objective_func : function
        objective function to be evaluated
    pool: multiprocessing.Pool
        multiprocessing.Pool to be used for parallel particle evaluation
    kwargs : dict
        arguments for the objective function

    Returns
    -------
    numpy.ndarray
        Cost-matrix for the given swarm
    """
    if pool is None:
        return objective_func(swarm.position, **kwargs)
    else:
        results = pool.map(
            partial(objective_func, **kwargs),
            np.array_split(swarm.position, pool._processes),
        )
        return np.concatenate(results) 
Example #26
Source File: ops.py    From glas with Apache License 2.0 5 votes vote down vote up
def get_folds(sources, num_folds, fold, holdout):
    """ Get the folds for the data set. """
    if num_folds < 2:
        return sources

    folds = np.array_split(sources, num_folds)
    return folds[fold] if holdout else np.concatenate(folds[:fold] + folds[fold + 1:]) 
Example #27
Source File: dataset.py    From rl_graph_generation with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
    assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
    arrays = tuple(map(np.asarray, arrays))
    n = arrays[0].shape[0]
    assert all(a.shape[0] == n for a in arrays[1:])
    inds = np.arange(n)
    if shuffle: np.random.shuffle(inds)
    sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
    for batch_inds in np.array_split(inds, sections):
        if include_final_partial_batch or len(batch_inds) == batch_size:
            yield tuple(a[batch_inds] for a in arrays) 
Example #28
Source File: test_base_execute.py    From mars with Apache License 2.0 5 votes vote down vote up
def testArraySplitExecution(self):
        x = arange(48, chunk_size=3).reshape(2, 3, 8)
        ss = array_split(x, 3, axis=2)

        res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
        expected = np.array_split(np.arange(48).reshape(2, 3, 8), 3, axis=2)
        self.assertEqual(len(res), len(expected))
        [np.testing.assert_equal(r, e) for r, e in zip(res, expected)]

        ss = array_split(x, [3, 5, 6, 10], axis=2)

        res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
        expected = np.array_split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2)
        self.assertEqual(len(res), len(expected))
        [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] 
Example #29
Source File: np_box_list_ops.py    From SlowFast-Network-pytorch with MIT License 5 votes vote down vote up
def prune_outside_window(boxlist, window):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also ClipToWindow which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a numpy array of size 4, representing [ymin, xmin, ymax, xmax]
            of the window.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in.
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """

  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  coordinate_violations = np.hstack([np.less(y_min, win_y_min),
                                     np.less(x_min, win_x_min),
                                     np.greater(y_max, win_y_max),
                                     np.greater(x_max, win_x_max)])
  valid_indices = np.reshape(
      np.where(np.logical_not(np.max(coordinate_violations, axis=1))), [-1])
  return gather(boxlist, valid_indices), valid_indices 
Example #30
Source File: np_box_list_ops.py    From ros_people_object_detection_tensorflow with Apache License 2.0 5 votes vote down vote up
def prune_outside_window(boxlist, window):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also ClipToWindow which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a numpy array of size 4, representing [ymin, xmin, ymax, xmax]
            of the window.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in.
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """

  y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
  win_y_min = window[0]
  win_x_min = window[1]
  win_y_max = window[2]
  win_x_max = window[3]
  coordinate_violations = np.hstack([np.less(y_min, win_y_min),
                                     np.less(x_min, win_x_min),
                                     np.greater(y_max, win_y_max),
                                     np.greater(x_max, win_x_max)])
  valid_indices = np.reshape(
      np.where(np.logical_not(np.max(coordinate_violations, axis=1))), [-1])
  return gather(boxlist, valid_indices), valid_indices